Problem 1. Consider the system $Ax = b$ where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}. $$

1. Project b onto the column space of A by solving $A^T A \tilde{x} = A^T b$.
2. Compute $p = A\tilde{x}$.
3. Find $e = b - p$ and show it is orthogonal to the columns of A.

Problem 2. Find two orthogonal vectors that lie in the plane $x + y + 2z = 0$. Make them orthonormal.

Problem 3.

1. Find orthonormal vectors q_1, q_2 that span the column space of

$$ \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}. $$

2. Compute q_3 such that q_1, q_2, q_3 are orthonormal.
3. Which of the four subspaces contains q_3?
4. Solve $Ax = (1, 2, 7)^T$ by least squares.

Problem 4.

1. What multiple of the vector $A^T = a^T = (1, 1)$ should be subtracted from the vector $b^T = (4, 0)$ to make the resulting vector B orthogonal to A?
2. Complete the Gram-Schmidt process by computing $q_1 = A/\|A\|$ and $q_2 = B/\|B\|$.
3. Factor The matrix $Z = [A, B]$ into QR:

$$ Z = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} \|A\| & ? \\ 0 & \|B\| \end{bmatrix}. $$
Problem 5.
1. What multiple of $a^T = (1, 1)$ should be subtracted from $b^T = (4, 0)$ to make the result c orthogonal to a?
2. Complete the Gram-Schmidt process by computing $q_1 = a/\|a\|$ and $q_2 = c/\|c\|$.
3. Factor $A = [a, b]$ into QR:
 \[
 \begin{bmatrix}
 1 & 4 \\
 1 & 0
 \end{bmatrix} = \begin{bmatrix}
 q_1 \\
 q_2
 \end{bmatrix} \begin{bmatrix}
 \|a\| & ? \\
 0 & \|c\|
 \end{bmatrix}.
 \]

Problem 6. Determine the linear combination of the two vectors $a = (1, 2, -1)$ and $b = (1, 0, 1)$ which is closest to the vector $c = (-1, 1, 1)$. Explain your results.

Problem 7. Assume the parabola $b = C + Dt + Et^2$ with measurements $b = 0, 8, 8, 20$ at times $t = 0, 1, 3, 4$.
1. Write down the four equations $Ax = b$.
2. Set up and solve the normal equations $A^T A x = A^T b$.
3. Let $e_i = b_i - C - Dt_i$. Compute $e_1 + e_2 + e_3 + e_4$.
4. What is the minimum of $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?
5. Compute $p = A\bar{x}$. Verify that $e = b - p$ is orthogonal to both columns of A.
6. What is the shortest distance $\|e\|$ from b to the column space?

Problem 8. Assume the straight line $b = C + Dt$ with measurements $b = 10, 4, 4, 0$ for $t_i = -1, 0, 1, 4$.
1. Write down the four equations $Ax = b$.
2. Set up and solve the normal equations $A^T A \bar{x} = A^T b$ for $\bar{x} = (C, D)$.
3. Compute $p = A\bar{x}$ and verify that $e = b - p$ is orthogonal to both columns of A.
4. Let $e_i = b_i - C - Dt_i$. Compute $e_1 + e_2 + e_3 + e_4$ and $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$.
5. Compute the shortest distance from b to the column space of A.

Problem 9. Project \(b = (b_1, \cdots, b_m) \) onto the line through \(a = (1, \cdots, 1) \).

1. Solve \(a^T a \bar{x} = a^T b \) to show that \(\bar{x} \) is the mean of the \(b \)'s.

2. Find the error vector \(e \), the variance \(\|e\|^2 \), and the standard deviation \(\|e\| \).

3. Draw a graph with \(b = (1, 2, 6) \) fitted to a horizontal line. What are \(p \) and \(e \) on the graph? Check that \(e \) is orthogonal to \(p \).

Problem 10. Are the following pairs of vectors independent, orthogonal, or orthonormal? Change the second vector when necessary to produce orthonormal vectors.

1. \(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \).

2. \(\begin{bmatrix} .6 \\ .8 \end{bmatrix}, \begin{bmatrix} .4 \\ -.3 \end{bmatrix} \).

3. \(\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} \).

Problem 11. Find orthogonal vectors by Gram-Schmidt from

\[
\begin{align*}
a &= \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, & b &= \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, & c &= \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}.
\end{align*}
\]