Answer at least three of the next four problems

Problem I. Consider the following rank one matrix:

\[A = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \end{bmatrix}. \]

(Hint: It is not necessary to compute \(A \) to do this problem.)

1. Find the four fundamental spaces of \(A \).
2. Find the eigenvalues of \(A \).
3. Find the eigenvectors of \(A \).

Problem II. Consider the matrix:

\[A = \begin{bmatrix} 1 & 2 & 3 & 6 \end{bmatrix}. \]

1. Compute \(A^T A \) and its eigenvalues and unit eigenvectors \(v_1 \) and \(v_2 \).
2. Show that the rank of \(A \) is 1.
3. What is, \(\sigma_1 \), the nonzero singular value of \(A \)?
4. Compute \(AA^T \) and its eigenvalues and unit eigenvectors \(u_1 \) and \(u_2 \).
5. Verify that \(Av_1 = \sigma_1 u_1 \).
6. Write down the Singular Value Decomposition of \(A \).
7. Write down orthonormal bases for the four fundamental subspaces for the matrix \(A \).

Problem III. What values of \(b \) makes this matrix positive definite?

\[A = \begin{bmatrix} 1 \\ b \\ b \end{bmatrix} \begin{bmatrix} 1 & b & 9 \end{bmatrix}. \]
Problem IV.

1. Compute the eigenvalues and eigenvector of A, B, $A + B$, AB, and BA:

\[
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix},
\]

2. Are the eigenvalues of $A + B$ equal to the eigenvalues of A plus the eigenvalues of B?

3. Are the eigenvalues of AB equal to the eigenvalues of A times the eigenvalues of B?

4. Are the eigenvalues of BA equal to the eigenvalues of B times the eigenvalues of A?

Answer at least one of the next two problems

Problem V. Consider the block matrix $B = \begin{bmatrix} A & D \\ D^T & C \end{bmatrix}$. Assume that A and C are symmetric. Also assume B satisfies $x^T B x > 0$ for all vectors $x \neq 0$ (positive definite).

1. Show that B is symmetric and $(A^{-1})^T = A^{-1}$.

2. Let $x = \begin{bmatrix} y \\ z \end{bmatrix}$. Compute

\[
x^T B x = \begin{bmatrix} y^T, z^T \end{bmatrix} \begin{bmatrix} A & D \\ D^T & C \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix}
\]

3. Show that A and C are positive definite.

4. Show that the matrix $S = C - D^T A^{-1} D$ is also positive definite.

Problem VI.

1. Show that the block matrix $B = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$, is symmetric even when A is rectangular.

2. Show that if $B x = \lambda x$ then $A z = \lambda y$ and $A^T y = \lambda z$, where $x = \begin{bmatrix} y \\ z \end{bmatrix}$.

3. Show that $A^T A z = \lambda^2 z$ so λ^2 is an eigenvalue of $A^T A$.

4. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Find all three eigenvalues and eigenvectors of B.

Extra credit will be given if you answer both Problems V and VI correctly. Please state which one is for extra credit.