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Abstract

Evolutionary tournaments have been used as a tool for com-
paring strategies. For instance, in the late 1970’s, Axelrod
organized tournaments to compare strategies for playing the
iterated prisoner’s dilemma (PD) game. While these tour-
naments and later research have provided us with a better
understanding of successful strategies for iterated PD, our
understanding is less clear about strategies for playing iter-
ated versions of arbitrary single-stage games. While solution
concepts like Nash equilibria has been proposed for general-
sum games, learning strategies like fictitious play may be pre-
ferred for playing against sub-rational players. In this paper,
we discuss the relative performance of both learning and non-
learning strategies that embody some of the above approaches
on an experimental testbed of all possible structurally distinct
2x2 conflicted games with ordinal payoffs. This set of bi-
matrices provides a baseline, neutral testbed for comparing
strategies. We discuss the testbed, our choice of representa-
tive learning and non-learning strategies and relative rankings
of these strategies ranked by cumulative score in tournaments.
We also study the performance of the strategies in an evolu-
tionary tournament. Finally, we provide some analysis of the
observed results to highlight the advantage of learning strate-
gies.

Introduction

Learning and reasoning in single or multistage games
have been an active area of research in multiagent sys-
tems (Banerjee, Sen, & Peng 2001; Bowling & Veloso 2001;
Claus & Boutilier 1998; Hu & Wellman 1998; Littman 1994;
2001; Littman & Stone 2001). In particular, iterative ver-
sions of single-stage bimatrix games have been used to eval-
uate learning strategies by multiagent researchers. Particu-
lar games like the Prisoner’s Dilemma (PD) have received
widespread attention both in the game theory and in mul-
tiagent systems. Solution concepts like Nash Equilibria
(NE) has been propounded as desired goals for rational play
though there exists several criticism of this view. We will
refer to a player who always plays a Nash strategy as a Nash
player. Though it follows from definition that an opponent
of a Nash player cannot do better than playing its compo-
nent of NE, playing a Nash strategy is not necessarily the
best option against a non-Nash player. A learning strategy
that tries to predict the move of the opponent and optimally

responds to that may be a better option against sub-rational
players.

In this paper, our goal is to evaluate relative performances
of representative learning and non-learning approaches on
a neutral but extensive testbed. For the testbed we adopted
the set of all possible structurally distinct 2x2 games with
ordinal payoffs without a single preferred outcome.

We compare the representative strategies in a tournament
format with each player (corresponds to a strategy) playing
every other player for all the 57 games both as the row and
the column player. For a given game,n iterations are played
which gives the learning players an opportunity to approxi-
mate the strategy being used by its opponent. The games are
played under the assumption of complete information, i.e.,
each player is aware of both its own and the other player’s
payoff matrix. Cumulative payoffs are used to order the per-
formance of the players. A one shot tournament may not be
representative of the strength of a strategy. Hence, we study
the evolution of a large population where all the strategies
are equally present at the beginning.

In the following we present the testbed with a character-
ization of the set of games used. Next, we introduce the
strategies used by the different players, the results from the
basic tournament, an evolutionary tournament framework
with corresponding results, and summary observation of the
results.

Tournament structure
In this section, we describe the basic tournament structure
given the set of matrices and a selection of strategies. First
we present the matrices that are used and then the format
and ranking procedure.

Testbed: Structurally distinct 2x2 conflicted games
with ordinal payoffs
We only consider a subset of the possible 2x2 payoff matri-
ces where agents have a total preference order over the four
possible states. We will use the numbers 1, 2, 3, 4, as the
preference of an agent for a state in the 2x2 matrix, with 4
being the most preferred. Though the payoff represent ordi-
nal payoff, we treat them as cardinal payoff.

This set of 57 matrices represent all the distinct conflict-
ing situation with ordinal payoffs(Brams 1994). We believe



this is an interesting set on which we can test the perfor-
mance of strategies or learning algorithms. If one strategy
is considered to be robust, it must be the case that overall,
competing against a variety of opponents, this strategy man-
ages to perform well enough. It might be the case that it
cannot perform well against some opponents in some partic-
ular games, some strategies might be more suitable in some
situation than others. However on the average, a robust solu-
tion should do well. Hence, if we run a tournament between
different strategies, we might expect that the winner of such
tournament present a practical solution in a general prob-
lem. Also, in the context of a large population, a strategy
might be well suited to exploit some strategies, and be weak
against others, especially in the case where the proportionof
the different strategies are not equal. Hence, it is also impor-
tant to test the performance of the strategies in evolutionary
tournaments.

Tournament setting
No two matrices, in the chosen set of 57 games, represent the
same game if we rename the players, or rename their actions.
The construction of the matrices, however, introduces a bias:
the player who is considered to be the column player has an
advantage. For instance, if we study the payoffs of the pure
Nash equilibria, in 31 cases, the payoff of the column player
is strictly higher than the payoff of the row player, in 9 cases
they are equal, and in 2 cases, the payoff is greater for the
row player.

To be fair, each player plays every other player both as a
column and as a row player for each of the matrices. Each
game is iterated 100 times. Because the action space is
small, we assumed that 100 iterations are reasonable for
players to adapt their strategies when using a learning ap-
proach. In order not to penalize the learning players that are
likely to perform badly during the early rounds, we accumu-
late the payoffs of the players only over the last 50 iterations
of the game. In this paper, each player has complete infor-
mation over the game. Each player is provided both its own
and the other’s payoff matrices. The players are not allowed
any other means of communication apart from expressing
their action at each iteration.

To summarize, for each pairing of two players, a player
will play 100 iterations as a row player, and 100 iterations as
a column player on each of the 57 game matrices. The score
of a player is computed by accumulating the payoffs of the
last 50 iterations for each game, hence over57 ∗ 2 ∗ 50 =
5700 decisions, for a particular opponent.

Players
We chose the strategies used in our tournament from well-
known learning and non-learning strategies (and one that
was the winner in a local competition between students):

Random: The action played is chosen from an uniform dis-
tribution over its action space. The use of this strategy can
also model a collection of other strategies represented in
the population.

MaxiMin(M): The action chosen is the one that produces
maximum lower bound payoff.

Nash(N): One of the Nash equilibrium strategies (Nash
1951) is played. A strategy combination(π1, . . . , πn) is
in Nash Equilibria (NE) if∀i, ri(π1, . . . , πi, . . . , πn) ≥
ri(π1, . . . , π

′
i, . . . , πn), whererk(π1, . . . , πn) is the pay-

off of player k andπ′
i is any other valid strategy fori.

This means at NE, no player has incentive to unilaterally
deviate from its current strategy. For non-communicating
rational players a strategy combination at NE is stable. To
compute the different Nash equilibria for the games, we
used Gambit1. Out of the 57 games used in the testbed, 6
games have multiple Nash equilibria. Since it is unclear
how non-communicating Nash players will choose from
multiple equilibria, we randomly selected the Nash equi-
librium played.

Tit for tat (TFT): This strategy is famous in the context of
the prisoner’s dilemma and the tournament ran by Axel-
rod (in this strategy, the player will play cooperate if and
only if the opponent played cooperate in the previous it-
eration, hence the name “tit for tat”). In the context of our
tournament, a player using the tit for tat strategy will play
the action that the opponent played during the previous
iteration. This strategy is purely reactive and takes into
account only the previous decision of the opponent.

Best Response to previous action (BR):A (BR) player
can be viewed as a sophisticated TFT player: instead of
playing the last actioni of the opponent, the player re-
sponds with the best response toi. In other words, the
player playing the best response strategy assumes that its
opponent is playing a pure strategy and answers optimally
to it. BR is also purely reactive and models the opponent
as a player either using a pure strategy or one with a strong
sense of inertia, i.e. aversion to change.

Fictitious Play (FP): This is the basic learning approach
well-known in game theory literature (Fudenberg &
Levine 1998). The player keeps a frequency count of its
opponent’s decisions from a history of past moves and
computes the mixed strategy being played by its oppo-
nent. It then chooses its best response to that mixed strat-
egy, with the goal of maximizing expected payoff. This
player models its opponent’s behavior and tries to respond
in an optimal way. If the opponent is playing a fixed pure
or mixed strategy, FP will be able to respond optimally.

Best response to Fictitious play (BRFP):This strategy
assumes that the population is composed of many learn-
ing agents using the FP strategy. The player models its
opponent as a FP player: knowing its own history of
actions, it can determine what an agent using FP would
do, and it computes the best response to this action. We
incorporated this strategy assuming that given that FP is a
reasonable learning strategy to play, a player can choose
to adopt a strategy to respond optimally to FP.

Saby: The last strategy that we have used was the one that
won a local tournament between students in a multia-
gent systems course. This learning strategy assumes that
the opponent is likely to respond to my moves and tries

1http://www.hss.caltech.edu/gambit



to model the probability distribution of the opponent’s
moves given my last move. This is akin to a 2-level player
compared to a 1-level player in our prior work (Mundhe &
Sen 2000). For its own actioni, in the last time period, the
agent first calculates the conditional probability of action
k of the opponent to be proportional to the average util-
ity the opponent received for choosing actionk the lastt
times it playedk when this player playedi in the previous
time step. These numbers are normalized to obtain the
conditional probabilities the opponent are expected to use
in choosing action in the next iteration. The agent then
plays a best response to that probability distribution.

We believe that probably not all of these strategies would
be used in an open environment. It seems reasonable to as-
sume that simple strategies such as R, TFT, BR and M would
be used. Because of the popularity of the concept of the
Nash equilibrium and as the basic learning approach, Nash
and FP are also likely to be used. We consider Saby as strat-
egy that is used by a minority of players. We did not con-
sider pure strategy players, i.e., players who always chosea
specific action, as the semantics of any action varies consid-
erably over the different games.

In our study, we are interested in two criteria for compar-
ing the strategies: the complexity of the strategy and whether
learning is used.

Simple Vs Complex strategies:Random (R), Tif For Tat
(TFT), Best Response (BR) and MaxiMin (M) are con-
sidered to be simple strategies. The random strategy can
be interpreted as the ensemble of behavior of a collection
of different lesser known strategies as well as behavior
exhibited by inconsistent players. On the other hand, We
hypothesize that playing Nash equilibrium (N) is a com-
plex strategy since computation of a Nash is NP complete.
Also, fictitious play (FP), Best Response to FP and Saby
are considered to be complex strategy

Learning Vs Non-learning strategies: Random, Nash and
MaxiMin are static strategies which do not respond to the
opponent. TFT and BR are simple, purely reactive strate-
gies, that can be considered as a primitive learning strate-
gies: an agent using TFT mimics the last action of the
opponent. Instead of mimicking the last action, an agent
using BR plays the best response to this action. The re-
maining strategies are learning strategies. The strategy
FP is the basic learning approach. If we assume that many
agents are using this basic learning approach, it is possible
to use a strategy which plays optimally against FP, hence
the use of BRFP. We introduced Saby strategy which also
uses learning.

Results
In the following, we summarize the results of the tournament
in two different format: ranking based on cumulative scores
and head to head comparisons.

Tournament Results
In the tournament we ran, each strategy introduced in the
previous section is represented by one player. As shown in

rank player Average score
per game

1 Saby 3.00
2 BRFP 2.99
3 FP 2.98
4 N 2.94
5 BR 2.93
6 MaxiMin 2.79
7 TFT 2.75
7 R 2.41

Table 1: Strategy ranking based on tournament.

Table 1, the player using the strategy of Saby wins the tour-
nament, followed closely by a player using best response to
fictitious play. In the table, we show the average score per
iteration to show the average level of preferences obtained.
All but the random player obtain close to their second most
preferred choice on the average.

BRFP, Saby’s player and FP are learning approaches that
model their opponent’s behavior, and they take the three first
places. The Nash player, models its opponent as a rational
player, and it comes in at the fourth position. It was surpris-
ing to see that best response to last move, a fairly straightfor-
ward strategy, performs almost at the same level as the Nash
player. The tit for tat player, which was a good choice in
a tournament setting involving only the prisoner’s dilemma
game turns in a relatively disappointing performance, and
finishes ahead of only the random player.

Two facts caught our attention in this results. First, 3
learning players perform better than the Nash player. It
might be the case that the other players are taking advan-
tage of the randomness introduced in the Nash player (in the
cases where there are multiple Nash equilibria, or in the case
when the Nash equilibrium is a mixed strategy). It might
also be the case that learning players play better against sub-
rational strategies like BR. Another point of interest was the
top ranking of BRFP: one can expect that the performance of
the best response to fictitious play outperform fictitious play.
However, since the other players are not using fictitious play,
it is not clear how well BRFP will do against them. One pos-
sible explanation is that BRFP may be exploiting the FP to
obtain a large payoff, and performing satisfactorily against
the others. In order to understand better this overall result,
we looked closely into the head to head results which we
present in the next section.

Head to Head Comparisons
In this section, we describe head to head results over the 57
games, derived from Table 2. This table contains the aver-
age score obtained by the strategy of the row while playing
against the strategy of the column over 100 instances of the
tournament. These results have a small standard deviation
(see Tabletab:varh2h) due to the use of learning and random
players. From the head to head results, we can compute the
net difference of score of the player (substracting from Ta-
ble 2 its transpose). for lack of space, we did not present



this table. The observation of the head to head results leads
to the following conclusions:

Nash: Its main gain comes from its games with the random
player and the MaxiMin player (a net win of respectively
0.53 and0.16, the other result not being significant).

FP: It is the best strategy if the opponent is a R, TFT or N
player. It loses noticeably against BRFP and Saby’s play-
ers ( a net loss of resp.0.27 and0.15). The game against
the random player plays an important role in the rank-
ing of this player (with a net win of0.61. Also, without
BRFP, in the tournament, its average accumulation would
have been much better, and it would win the tournament.

BRFP: It is the best strategy if the opponent is a BR, FP or
Saby’s player. It loses narrowly against only TFT and N,
but the results are not significant. This is expected since
these two strategies are completely different from FP. But
it makes up by obtaining high gains against BR (which
is a degenerate version of FP with a single memory cell),
FP (for which it is designed to play optimally) and Saby’s
(resp. a net win of0.20, 0.28 and0.17). Moreover, it is
the only player which is able to defeat significantly Saby’s
player head to head.

Saby’s player is the best strategy (followed by Nash)
against BRFP.

Also, while considering the diagonal of the matrix, we
can compare the self play results. Saby’s strategy perform
the best with a score of2.99, followed by fictitious play with
a score of2.955.

Evolutionary Tournament
In the preceding instances of the tournament we ran, each
strategy is represented by one player. The player has a fixed
strategy and we compare the average payoffs for a player
with a given strategy. We have also investigated the effect of
an evolutionary mechanism upon the demography in terms
of strategy distribution in the population in a tournament
with multiple players per strategy. We wanted to find out
the existence and if so the nature of the equilibrium strategy
distribution of the population and the rate of convergence to
that distribution starting from uniform strategy distributions.

An equilibrium refers to convergence to a stable state
(population distribution) or a set of states. Payoffs for a
given strategy can change with the changing distribution (or
demography) of the population. It is possible that a given
strategy receives high payoff only in the presence of some
other strategy or that two strategies are mutually reinforc-
ing, leading to an equilibrium distribution. This can produce
interesting strategy distribution dynamics as the population
evolves.

A round robin tournament is played for each generation.
In each generation, each player plays each other player in
every matrix and both as a row and a column player. The
resultant cumulative score represents the performance of the
player in that generation of the tournament. We are more
interesting in the dynamics of the evolution than a fat con-
vergence to an equilibrium. Hence, we want to test differ-
ent selection mechanism and study whether they give rise

to the same kind of dynamics. To select the strategy dis-
tribution in the population in the next generation, we con-
sidered three different schemes(Deb & Goldberg 1991): the
pure and a modification of tournament selection, and fitness
proportionate selection. The modification of the tournament
selection (see Algorithm 1) adds a flavor of the fitness pro-
portionate selection mechanism. Tournament selection only
need local information, i.e. the score of two players chosen
randomly. The modification tends to increase the likelihood
of choosing players which performs better. The pure tour-
nament selection selects the two strategiesρ0 andρ1 from
a uniform distribution whereas the modified scheme selects
them with a probability proportionate to their score. A pri-
ori, the convergence using the modified version of the tour-
nament selection should be faster.

Algorithm 1 Modified Tournament Selection Algorithm

strat(i) denotes the strategy of playeri
score(i) denotes the cumulative results obtained by
playeri during one instance of the tournament
for N iterationsdo

for every player kdo

Prob(pick k) =
score(k)

∑
i score(i)

for every player kdo
pick randomlyρ0 andρ1 according toProb
newstrat(k)← strat(argmaxi∈{0,1}(score(ρi)))

for every player kdo
strat(k)← newstrat(k)

We run tournaments starting with a population where the
strategies are uniformly distributed, i.e., all strategies have
equal representation. In order to avoid to run the games each
time, we simulate the tournament. For a game between two
playerp1 andp2, the score obtained bypi∈{1,2}, is a sam-
ple drawn from a normal distribution of the corresponding
mean and variance from tables 2 and??. This is only an
approximation of the tournament since we draw the score
from independent distribution, which is not correct. How-
ever, we did not observe different trend when we compare
the actual tournament on small settings. Hence we believe
this is a good approximation and the variance of the results
do not play an important role in the results.

Figures1, 2 and 3 present the result of a simulation ran
with a initial population of 100 agents for each strategy, us-
ing the three different selection mechanism. The three sys-
tems converge to a mixed population of agents using Saby
and BRFP strategy. When these two strategies are present in
the system, there is an equilibrium point for a proportion of
0.2017% of agents using Saby and0.7983% of agents using
BRFP. At this point, all the agents have the same score as
shown in Figure 4. It does not come as a surprise that these
two strategies do well, however, it is surprising to observea
mix equilibrium.

It is also interesting to note that the three selection mech-
anisms have a similar dynamics, though on different scale.
At the beginning, as expected from the results of the tour-
nament, saby, BRFP, FP and FP increases their proportion.



RN TFT N BR FP BRFP MaxiMin Saby
RN 2.5003 2.4994 2.3692 2.4087 2.3869 2.3680 2.3138 2.3990
TFT 2.5014 2.5198 2.9273 2.8216 2.7507 2.8863 2.5824 2.9724
N 2.9036 2.9283 2.9399 2.9337 2.9267 2.9444 2.9036 2.9393

BR 2.9161 2.7404 2.9360 2.9056 3.0019 2.9339 3.0823 3.0158
FP 2.9944 3.0107 2.9429 2.9928 2.9551 2.9047 3.0732 2.9427

BRFP 2.8826 2.8598 2.9175 3.1305 3.1823 2.9174 2.8784 3.1158
MaxiMin 2.9980 3.1374 2.7401 2.7056 2.7156 2.7354 2.6316 2.6952

Saby 2.9144 3.0140 2.9336 3.0338 3.0915 2.9491 3.0791 2.9904

Table 2: Head to head results - score obtained by the row player while playing against the column player

RN TFT N BR FP BRFP MaxiMin Saby
RN 0.016032 0.015864 0.012480 0.013441 0.030937 0.011822 0.009820 0.014533
TFT 0.012642 0.071483 0.007061 0.033716 0.043553 0.001779 0.001818 0.018885
N 0.011537 0.008352 0.006767 0.008595 0.025941 0.006234 0.005641 0.008282

BR 0.015559 0.001810 0.009009 0.000000 0.000000 0.000000 0.000000 0.000478
FP 0.014098 0.042547 0.007501 0.000000 0.000000 0.000000 0.000000 0.008326

BRFP 0.012979 0.038393 0.006967 0.000000 0.000000 0.000000 0.000000 0.002516
MaxiMin 0.011796 0.001845 0.007582 0.000000 0.000000 0.000000 0.000000 0.003178

Saby 0.013698 0.023523 0.007718 0.008456 0.004259 0.002609 0.000229 0.014915

Table 3: Head to head results - standard deviation of the score obtained by the row player while playing against the column
player
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Figure 1: Evolutionary Tournament with 100 agents for each
of the 8 strategies. Tournament Selection

Then, because of the presence of more agents using FP,
BRFP can exploit them better, hence we see that the pro-
portion of FP agent decreases, and the proportion of BRFP
improves faster than the proportion of Saby. At this point,
most of the agents are using either BRFP and Saby, and the
proportion starts to get closer to the equilibrium point.

Tournament selection and the modified tournament selec-
tion needs6 iterations to reach their equilibrium, whereas
the fitness proportionate mechanism reaches convergence
after ≈ 180 iterations. Since the convergence is fast,
the modification of tournament selection does not play an
important role in this problem. However, the selections
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Figure 2: Evolutionary Tournament with 100 agents for each
of the 8 strategies - Modified Tournament Selection.

mechanism for the tournament selection and its modifica-
tion makes the system bounce back and forth the equilib-
rium point. Experiments using larger numbers of evolutions
shows that the system keeps on oscillating without dampen-
ing, and we also observed these oscillations in larger sys-
tems (the same phenomenon occurs with a population ini-
tially containing 1000 agents for each strategy).

Conclusion
We have evaluated several representative learning and non-
learning strategies in a round-robin tournament format by
playing two-player two-action iterative single stage games.
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The evaluation set consists of all structurally distinct 2x2
conflicted ordinal-preference games and provides a fair and
extensive set of testing scenarios.

The learning algorithms including fictitious play and a
best response to it outperform players like Nash. Though
the actual ranking is dependent on the exact set of players
involved, it can be argued that the learning players will typ-
ically outperform non-learning players when there is a va-
riety of players in the tournament. We also notice that the
learning players performed better in self play. It also cameas
a surprise that averaged over all the games, the Nash player
could significantly outperform only the random player. Also
the fictitious play player loses out to the player who plays
best response to it, and can only fare well by outperforming
the random player. The evolutionary tournament reinforced
the results from the basic, single-stage tournament.

While the current set of experiments are run over all struc-
turally distinct conflicted 2x2 games with ordinal payoff, it
would be interesting to see if these results generalize to large
samples of randomly generatedn × n games with cardinal

payoff. Finally, we observed the evolution of population us-
ing different initial strategy distributions. In some cases, few
good agents can take over an entire population, especially in
the case of tournament selection. We are planning to investi-
gate further these effects and the importance of the selection
mechanism.

References
Banerjee, B.; Sen, S.; and Peng, J. 2001. Fast concur-
rent reinforcement learners. InProceedings of the Seven-
teenth International Joint Conference on Artificial Intelli-
gence, 825–830.
Bowling, M., and Veloso, M. 2001. Rational and con-
vergent learning in stochastic games. InProceedings of
the Seventeenth International Joint Conference on Artifi-
cial Intelligence, 1021–1026.
Brams, S. J. 1994.Theory of Moves. Cambridge University
Press, Cambridge: UK.
Claus, C., and Boutilier, C. 1998. The dynamics of rein-
forcement learning in cooperative multiagent systems. In
Proceedings of the Fifteenth National Conference on Ar-
tificial Intelligence, 746–752. Menlo Park, CA: AAAI
Press/MIT Press.
Deb, K., and Goldberg, D. 1991. A comparative analysis of
selection schemes used in genetic algorithms. In Rawlins,
G. J., ed.,Foundations of Genetic Algorithms, 69–93. San
Mateo, CA: Morgan Kaufman.
Fudenberg, D., and Levine, K. 1998.The Theory of Learn-
ing in Games. Cambridge, MA: MIT Press.
Hu, J., and Wellman, M. P. 1998. Multiagent reinforce-
ment learning: Theoretical framework and an algorithm.
In Shavlik, J., ed.,Proceedings of the Fifteenth Interna-
tional Conference on Machine Learning, 242–250. San
Francisco, CA: Morgan Kaufmann.
Littman, M. L., and Stone, P. 2001. Implicit negotiation in
repeated games. InIntelligent Agents VIII: AGENT THE-
ORIES, ARCHITECTURE, AND LANGUAGES, 393–404.
Littman, M. L. 1994. Markov games as a framework for
multi-agent reinforcement learning. InProceedings of the
Eleventh International Conference on Machine Learning,
157–163. San Mateo, CA: Morgan Kaufmann.
Littman, M. L. 2001. Friend-or-foe q-learning in general-
sum games. InProceedings of the Eighteenth International
Conference on Machine Learning, 322–328. San Fran-
cisco: CA: Morgan Kaufmann.
Mundhe, M., and Sen, S. 2000. Evaluating concurrent
reinforcement learners. InProceedings of Fourth Interna-
tional Conference on MultiAgent Systems, 421–422. Los
Alamitos, CA: IEEE Computer Society.
Nash, J. F. 1951. Non-cooperative games.Annals of Math-
ematics54:286 – 295.


