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ABSTRACT
Knowledge transfer between expert and novice agents is a
challenging problem given that the knowledge representa-
tion and learning algorithms used by the novice learner can
be fundamentally different from and inaccessible to the ex-
pert trainer. We are particularly interested in team tasks,
robotic or otherwise, where new teammates need to replace
currently indisposed team member(s). We are interested in
a general knowledge transfer framework where existing team
members or experts can train a new agent to follow its role
in team coordination by using exemplars of desirable be-
havior. Each such exemplar presents a team situation and
a preferred action. We envisage an iterative training pro-
cess where the trainer selects more exemplars in the next
iteration based on the errors made by the learner in action
choices for test exemplars presented in the current iteration.
Such an iterative, exemplar based generic knowledge trans-
fer scheme can be used by agents using arbitrary knowledge
representation and learning methods. We evaluate the suc-
cess of training new teammates in the well-known pursuit
problem, where some of the current set of expert predators is
being replaced by new ones with no a priori hunting knowl-
edge. Experimental results demonstrate the robustness of
our knowledge transfer scheme with a graceful performance
degradation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; I.2.6 [Artificial Intelligence]:
Learning

General Terms
Experimentation, Performance
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1. INTRODUCTION
We have proposed an Agent Teaching Agent (ATA) frame-

work to address the problem of transfer of concept descrip-
tion knowledge between a trainer and a trainee agent. A
concept description is a boolean-valued function that clas-
sifies input examples into various discrete classifications of
the target concept [5]. We assumed that the trainer agent
does not have access to the internal knowledge representa-
tion of the trainee agent, but can evaluate the latter’s con-
cept recognition abilities by asking it to categorize selected
exemplars and non-exemplars of the target concept. We
focused on the incremental selection of training exemplars
by the trainer to expedite the learning of the trainee agent.
The ATA framework involves several iterations of training
and test set presentations to the trainee, where the trainer
chooses the training set of one iteration based on the mis-
takes made by the trainee on the test set in the previous
iterations.

The goal of this paper is to show that the ATA frame-
work can be used to transfer coordination knowledge to
other agents, without information about the other agent’s
internal knowledge representation and learning algorithms.
Such coordination knowledge transfer allows teams to re-
cover from failure of some team members as well as deploy
“clone” teams in the environment to reduce load on the cur-
rent team of trainers. We assume that the trainer itself is
a learner (a member of the current team), who learns its
coordination knowledge from training instances provided by
a domain expert, e.g., a coach. We further assume that this
training set provided by the expert is no longer available,
and the trainer must generate new exemplars from intro-
spection to train new teammates.

To support our claims for the effectiveness of the iter-
ative training process used in ATA, we also compare the
performance of ATA-trained trainees with the performance
of other trainee agents taught by the teacher agent in one
iteration by presenting a single training set. Our results
clearly show that the concept description generated by the
trainee agent in the latter case is less effective in compari-
son to the concept description formed by the trainee agent
trained using the ATA framework.

2. ATA FRAMEWORK
The trainer agent uses its learning module to acquire the

target concept from its interaction with an environment,
which may include an expert providing feedback. This learn-
ing process produces a target concept description in the
knowledge representation used by the trainer agent. The



Train-Agent(Trainer,Trainee,Trainer-knowledge){
Select initial training set N0 and initial testing set T0 from
Trainer-knowledge
i← 0
repeat

trainee agent trains on Ni

Mi ⊂ Ti , examples misclassified by trainee after train-
ing on Ni

Ti+1 ← Ti ∪ newTestInstances(Mi)
Ni+1 ← Ni ∪ newTrainingInstances(Mi)
i← i + 1

until |Mi| < threshold

Figure 1: Algorithm for incremental training.

trainer agent also has a training module which interacts
with the trainee and provides successive training and test-
ing sets to train and evaluate the progress in learning of the
trainee agent. The trainee learns its own concept descrip-
tion from the set of classified training examples provided by
the trainer. It also classifies each of the unclassified test ex-
amples provided by the trainer and returns these classified
instances to the trainer for evaluation.

We envisage an iterative training procedure in which al-
ternatively the trainer selects a set of training and testing
exemplars, the trainee trains using the training set and then
classifies the testing set, the trainer observes errors made by
the trainee in classifying the instances in the last testing
set and accordingly generates the next training and test-
ing sets. This iterative process converges when the error of
the trainee falls below a given threshold. We present these
iterative training steps in an algorithmic form in Figure 1.

3. DOMAIN AND TRAINING DATA
The domain used for our experimentation is the predator-

prey pursuit problem [3] in a continuous world. This prob-
lem requires effective coordination by a group of agents to
achieve a goal. The goal of the predator in this paper is
to capture a prey which is moving in a straight line with
half the speed of the predator. The predators who move
simultaneously can see each other and the prey, but cannot
communicate explicitly to coordinate their moves. To cap-
ture the prey, predators must surround it from four sides
and be within a threshold distance of the prey. However if
they come in close proximity of each other, a collision occurs
and each of the colliding parties move a significant number
of steps away from the collision point. To avoid such colli-
sions, an expert predator moves a few steps orthogonal to
the direction of the prey when it senses another predator in
close proximity. The predators must capture the prey within
a maximum number of steps, after which the game stops.

For our experimental setup, we have considered C4.5, a
decision tree based algorithm [7] as the learning mechanism
for the trainer and an instance based learning algorithm,
IB2, as the learning mechanism for the trainee. IB2 uses an
incremental learning algorithm that stores a subset of the
training examples as its classification knowledge [1].

The experts provide the trainers with 17500 instances
from various configurations to learn from. The large size
of training is required to capture the complexities of coor-
dinating four teammates in continuous space. To derive a
rich set of training instances, the experts calculated all pos-

sible orientations of the four predators in the four quad-
rants centered at the prey. A configuration is a vector
< n1, n2, n3, n4 > where ni ∈ {0, 4} and

∑
4

i=1
ni = 4 and

ni is the number of predators in quadrant i with respect to
the prey. Several initial predator-prey situations were gener-
ated for each such configuration, and the move of the experts
from each such situation was noted. A training instance is
created for each situation-move pairs by noting polar coor-
dinates of the other predators and the prey, assuming this
expert’s positions as origin, were the classification of the in-
stance is the move(right, left or ahead) selected by this ex-
pert at this situation. A typical training set data is a tuple
(r1, θ1, r2, θ2, r3, θ3, rp, θp, M), where the different r and θ

values signify the polar quadrants of the other three experts
and the prey with respect to the expert who is teaching the
trainer. M signifies the move that would be taken by the
teacher expert under such an orientation. Once the train-
ers learn their coordination knowledge, they use the ATA
framework to teach a new team member, the trainee.

4. RESULTS
Now we present the results from our experiments. The

game is played on a 20 × 20 grid. We denote the various
participants in our experiments by the following notations.

• Expert, E ,

• Trainer agent C: a decision tree based [7] learner,

• Trainee agent I: an instance based learner taught by a
C agent in one iteration,

• Trainee agent A: an instance based learner taught by
a C agent iteratively using the ATA framework.

Table 1 shows the performance of the different mixes of
predators in the predator-prey pursuit game averaged over
1750 games. The first notable observation from Table 1
is the relative performances of the homogeneous groups of
trainees who are taught either through the ATA framework
or in one iteration. The relevant rows from Table 1 in this
case are those with configurations AAAA and IIII. Clearly
the AAAA configuration shows a higher capture rate and
a faster capture to signify that the trainees who have un-
dergone the learning process through the ATA framework
have developed better coordination knowledge than those
who have been taught in one iteration. Also the percentage
capture rate for the AAAA configuration is fairly close to
that of the CCCC configuration, consisting of all trainers,
which shows that ATA framework has done a good job in
teaching coordination knowledge to the new agents.

Now we shift our attention to heterogeneous predator team
compositions. Interestingly, heterogeneous groups have smaller
standard deviation compared to homogeneous groups, ex-
cept for the group of experts. One reason for heterogeneous
groups performing better than homogeneous groups can be
that the differences in the knowledge of C and A agents can
present useful complementarity that actually facilitate coor-
dination. We also ran the Wilcoxon Matched-Pair Signed-
Ranks test for pairs of groups where the team compositions
differ by one trainee. The results show that the difference in
step sizes to capture the prey is statistically significant for
all such head-to-head comparisons.



Steps
Configurations %Capture Mean STD

EEEE 100 14.77 6.63
CCCC 86.74 45.49 32.53
CCCA 100 17.85 8.19
CCAA 95.77 24.12 11.39
CAAA 89.54 32.69 18.59
AAAA 81.54 43.34 29.90

IIII 67.42 62.18 50.32

Table 1: Summary performance on an average of

1750 games

5. RELATED WORK
Multiagent learning has been an active area of research

in the late 90s [8, 9]. The most relevant work involves one
learner telling another agent what portions of the search
space to ignore [6], a learner sharing experience [2], problem-
solving traces or even learned policies [10] with another con-
current learner. A recent paper discusses a method for two
agent to mutually define a concept [11]. Though emphasis is
placed on instance selection, in contrast to the current work,
there is no pre-existing concept, and hence the learners are
peers rather than a trainer-trainee pair. Tan’s work [10]
of an expert sharing effective problem solving traces with a
novice agent and Clouse’s work of a trainer suggesting ac-
tions to take [4] are perhaps the closest in motivation to the
current work, but the iterative nature of teaching, at the
heart of the ATA framework, is not addressed by them.

6. CONCLUSIONS
We developed a generic approach for knowledge transfer

between experts and novice agents where the knowledge rep-
resentation and learning algorithms of the experts and the
trainees are fundamentally different. We present arguments
for the generality of our approach for learning coordination
knowledge and evaluate its effectiveness in the pursuit prob-
lem with a decision tree learner used as the learning module
of the trainer and an instance based learner used as the
learning module of the trainee. Initial results are encourag-
ing and demonstrates effective transfer of coordination. The
learners trained through the ATA framework exhibit consis-
tently higher performance compared to the learners trained
with a single presentation of training data. A team com-
posed entirely of new trainees perform close to the team of
trainers. More importantly, heterogeneous teams of trainers
and trainees outperform homogeneous teams of either the
trainers or the trainees. The results show effective trans-
fer of coordination knowledge to new teammates by existing
players using the ATA framework.

We plan to run experiments on a wider set of problem in-
stances with variants of the pursuit problem. We plan to use
a support-vector machine based agent as trainer and trainee
agents in conjunction with the current instance-based agent
and decision-tree based agents. We also plan to explore pos-
sible combinations of active learning and ATA approaches
to train new teammates. In the future, we would like to
run our ATA framework on predators that collude between
themselves to evolve a strategy for capturing the prey in
optimal number of steps as well as for transferring coordi-
nation knowledge in other challenging multiagent problems.
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