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1. INTRODUCTION
We address the problem of knowledge transfer between

a trainer and a trainee agent. The knowledge being trans-
ferred is a concept description, a boolean-valued function
that classifies input examples as members or non-members
of the target concept. We assume that the trainer agent does
not have access to the internal knowledge representation of
the trainee agent, but can evaluate its concept recognition
abilities by asking it to categorize selected exemplars and
non-exemplars of the target concept. The trainer agent also
do not have access to the original training set from which it
learned its concept description, and hence has to rely only
on that learned knowledge to train the trainee agent. We
present an Agent Teaching Agent (ATA) framework which
focuses on incremental selection of training examples by the
trainer to expedite the learning of the trainee agent.

We envisage an iterative training procedure in which al-
ternatively the trainer selects a set of training and testing
exemplars, the trainee trains using the training set and then
classifies the testing set, the trainer observes errors made by
the trainee in classifying the instances in the last testing set
and accordingly generates the next training and testing sets.
This iterative process converges when error of the trainee
falls below a given threshold. We now present these iterative
training steps in an algorithmic form:
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Procedure Train-Agent(Trainer,Trainee,Domain-Info){
Select initial training set N0 and initial testing set T0 from
Domain-Info
i← 0
repeat

Train trainee agent on training set Ni

Let Mi be the instances in Ti misclassified by trainee
after training on Ni

Ti+1 ← Ti ∪ newTestInstances(Mi) and Domain-Info
Ni+1 ← Ni ∪ newTrainingInstaces(Mi)
i← i + 1

until |Mi| < threshold
}
The above procedure needs to be further fleshed out to

realize an actual implementation. In particular, we have to
specify procedures for selection of the initial training and
testing sets, N0 and T0, and the generation of the next test
set Ti+1 based on the mistakes, Mi, made by the trainee on
the current test set. When selecting the initial training and
testing instances, the goal is to select the most discriminat-
ing examples that help identify regions of the input space
that do and do not belong to the target concept. For ex-
ample, if a hyperplane separates instances of the target con-
cept from non-instances, then points close to and on both
sides of that hyperplane should be selected as initial train-
ing and testing set members. When selecting the next set
of training and testing instances, the goal is to first isolate
the mistakes made on the previous test set, and for each of
these instances, find a few neighboring points, use some of
them as part of the training data and the rest as part of the
test data in the following iteration. Note that the true clas-
sification of these points will not be known in general, and
only their estimated classification, based on the concept de-
scription knowledge previously acquired by the trainer, can
be used.

The actual procedure for selecting the incremental train-
ing and testing sets depend on the internal representation
used by the trainer agent. We have developed these proce-
dures for instance based and decision tree learners to work
on problems with real-valued attributes. More details about
the architecture and the algorithms can be found at
http://www.mcs.utulsa.edu/~karpa/AAMAS03full.pdf.

2. RESULTS
In this paper, we report on results from experiments us-

ing an instance-based learning algorithm, IB2 [1], and a
decision-tree based learning algorithm, C4.5 [2], as trainer
and trainee agents. For initial development and evaluation
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Figure 1: Decision surfaces produced by batch and
incremental training of C4.5 by IB2 on 2/1 dataset.
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Figure 2: Performance of IB2 in the 2/1 problem
with increasing training instances given by C4.5.

we used a set of artificial concept descriptions. All of the ar-
tificial problems we have experimented with are defined on 2
continuous attributes, where the domain of each attribute is
[0, 1]. Due to space limitations, here we discuss results from
only one of the artificial data sets, the 2/1 problem, and one
real-life data set from the UCI machine learning repository
(http://www1.ics.uci.edu/~mlearn/MLSummary.html).

We compare the effectiveness of this incremental training
framework with the baseline case of the trainee having ac-
cess to the entire original training set used by the trainer
for its learning. Figure 1 presents results when IB2 is the
trainer and C4.5 is the trainee on the 2/1 data set. The fig-
ure on the left shows the concept description (shown as the
white region) formed when all points stored by IB2 is given
to C4.5 in one shot. The right one shows the decision sur-
face after 14 iterations in the iterative method. The straight
lines correspond to the actual concept boundaries: the re-
gion in between the two lines is not part of the target con-
cept. From these two figures, it is clear that the incremental
method produces a better fit of the concept learned by the
trainee to the true concept, and hence produces greater test-
set classification accuracy.

We next used C4.5 as the trainer agent and IB2 as the
trainee agent and the corresponding results are presented in
Figure 2. When C4.5 is trained with 800 training instances
it learns 27-31 rules for different training sets of 5-fold cross
validation. While using C4.5 as the trainer, the initial train-
ing set for training IB2 (we assume that the original training
set is no longer available to the teacher) is generated by se-
lecting points on all sides of the boundaries at each vertex of
every hyperrectangle corresponding to leaf nodes of the de-
cision tree. The initial training set for the 2/1 problem typ-
ically contains about 115-125 examples over different runs.

C4.5 (full training set, 245 instances) 68.72%
IB2 (full training set, 245 instances) 56.08%
C4.5 (incremental training, 65 instances) 63.5%
IB2 (incremental training, 154 instances) 63.52%

Table 1: Average test set performance on Haber-
man’s Survival Data Set.

In all of the 5-fold cross validations, we got a testing accu-
racy of about 75% after the first training iteration. After
12-17 iterations final testing accuracy in the range of 92.5%
to 94.5% is reached. The final training set size varies in the
range of 415 to 460 whereas IB2 has an accuracy of 94%
when trained with the original 800 training examples.

As in the case of IB2 teaching C4.5, here also we find
that incremental training results in rapid improvement in
classification performance of the trainee agent over the entire
test set. The final accuracy is comparable to the accuracy
of the trainer’s knowledge or the trainee’s knowledge if it
had access to the original training set. Also the incremental
version requires much less training examples, between 240
and 275 instances, than the entire training set size of 800
points.

Particularly interesting results (see Table 1) were obtained
with the Haberman data set obtained from the UCI repos-
itory: IB2 acting as a trainer can train C4.5 to have better
testing accuracy than itself. The trainer can, via the it-
erative training process, produce a more competent trainee!
The final concept identification capability appears to depend
on the learning biases of the trainee more than the learning
bias of the trainer.

3. RELATED WORK AND CONCLUSIONS
Related work on active learning methods allow learners to

query omniscient trainers. For example, pool based active
learning has been used in support-vector machines (SVMs)
instead of randomly selected training set [3].

We are currently running experiments on a wider set of
problem instances that contain both artificial and real-life
data and plan to include the results in the next update of
this paper. We plan to use additional learning algorithms,
e.g., SVMs, neural nets, genetic algorithm based classifiers,
etc. as trainer and trainee agents. We also plan to explore
possible combinations of active learning and the ATA ap-
proach.
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