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Abstract. We believe that intelligent information agents will represent
their users interest in electronic marketplaces and other forums to trade,
exchange, share, identify, and locate goods and services. Such informa-
tion worlds will present unforeseen opportunities as well as challenges
that can be best addressed by robust, self-sustaining agent communi-
ties. An agent community is a stable, adaptive group of self-interested
agents that share common resources and must coordinate their efforts
to effectively develop, utilize and nurture group resources and organi-
zation. More specifically, agents will need mechanisms to benefit from
complementary expertise in the group, pool together resources to meet
new demands and exploit transient opportunities, negotiate fair settle-
ments, develop norms to facilitate coordination, exchange help and trans-
fer knowledge between peers, secure the community against intruders,
and learn to collaborate effectively. In this talk, I will summarize some
of our research results on trust-based computing, negotiation, and learn-
ing that will enable intelligent agents to develop and sustain robust,
adaptive, and successful agent communities.

1 Introduction

Humans are often referred to as social animals. What this implies is that societal
relations and interactions are important and essential in our lives. Various modal-
ities and temporal horizons of social interactions enrich our life and supports our
material and spiritual pursuits. As agent researchers, we envision autonomous,
intelligent agents as augmentations of our natural selves that can relieve us of
some of our chores and responsibilities. While some of these tasks can be achieved
individually, without input from others, a significant proportion of such tasks
would require our agents to interact with agents of our peers or other members
of our society. Such interactions may involve sharing of resources, give-and-take
of information and expertise, collaborative efforts for a common cause, etc. Just
as we humans thrive in our societies, these intelligent agents will contribute and
benefit from artificial agent societies. Hence, agents must be social entities. Until
that happens, our agents will necessarily be limited in potential, bereft of the
opportunities provide by the social scaffolding that we enjoy, and constrained by
the limited local resources, knowledge, and capabilities.



But before the vision of a vibrant, productive agent society becomes a reality,
significant research investments in codifying and formalizing social protocols,
norms, and mechanisms must be made. Our MultiAgent SysTEms ReSearch
(MASTERS) research group at the University of Tulsa have been studying, for
more than a decade, mechanisms, algorithms, and techniques to foster social
collaboration and coordination mechanisms ranging from negotiation schemes to
trust-based reasoning, predictive and proactive coordination protocols to mul-
tiagent learning algorithms. In particular, we emphasize the value of a stable
environment for agents where they choose relationships to enter in, resources to
share, commitments to make and keep, agents to interact with, etc. While mone-
tary transactions are necessary for one-time interactions or in unstable societies
with significant flux in agent compositions, our work focuses on environments
where agents are resident for significant time periods and hence interact repeat-
edly with the same agents. Thus we can utilize rich interaction modalities and
principles including trust, belief, context, history, future expectations, shared
values, etc. that allow for some of the same richness of interaction that we enjoy
in human societies. We are primarily interested in leveraging history of interac-
tions to identify trustworthy partners to engage in long-term relationships. We
are actively working on developing principles and mechanisms that allow agents
to build and sustain communities. Our vision is that of robust agent commu-
nities that form, grow, and flourish from proactive collaboration, that benefit
from each other’s resources and expertise, that encourages active cooperation to
develop, sustain, secure, and enrich its inhabitants.

In this invited talk, I present representative results from some of these in-
vestigations. As it is not possible to do justice to all of these research, I have
chosen to highlight the primary motivation, technical approach and summary
contribution from a select few recent research efforts. I refer the reader to our
website (http://www.mcs.utulsa.edu/~sandip) for a list of our papers which
would provide a more thorough and representative overview of our research.

We will overview the following subset of our research areas:
• In Section 2 we present results from our work on trusted, reciprocal relation-
ship maintenance in agent communities and its applications in P2P networks.
• In Section 3 we present a multiagent learning scheme that solve well-known
social dilemma problems like the Prisoner’s dilemma,
• In Section 4 we present a framework by which one agent in the community
can teach classification knowledge to another agent without knowledge of the
latter’s knowledge representation or learning algorithms.
• In Section 5 we present results on emergence of social norms when populations
of agents interact repeatedly,
• In Section 6 we outline a study that involves the use of simple learning strate-
gies to identify optimal partnerships in a large population.
• In Section 7 we overview a protocol for negotiating fair and efficient allocation
of multiple, indivisible resources.
• In Section 8 we present strategies that allow agents to bid for bundles of items
from concurrent auctions selling individual items.



• In Section 9 we present techniques that allow agents to share referrals about
service providers that allow the agent community to settle in states where all
agents are satisfied with their current service provider.
• In Section 10 we outline techniques for improving security and data integrity
in sensor networks by detecting malfunctioning nodes.
• In Section 11 we summarize a probabilistic reasoning mechanism for detecting
deviations from team plans by a team member.

2 Reciprocal relationships

Our work on reciprocal relationships allow self-interested agents to leverage com-
plementary expertise in stable agent communities. An agent can ask for help for
a task from an expert in that task type. The help from the expert saves the
requesting agent significant cost which is greater than the cost incurred by the
expert agent while helping. In another situation, the role of the helping and
the helped agents may be reversed. Thus, if the environment has sufficient co-
operation possibilities, self-interested agent will find it prudent to enter into
reciprocal relationships. Our work allows agents to develop, nurture, and sus-
tain such relationships while avoiding exploitative agents who receive help but
do not reciprocate.

In our early work on reciprocity [1, 2], we had a restrictive assumption that
agents have fixed strategies for deciding whether or not to help other agents.
More specifically, agents were either reciprocative, selfish (never returned help),
philanthropic (always helped) or individual (never gave or received help). Agents
with specified strategies interacted repeatedly over a sustained period of time
and their effectiveness was calculated as a function of the total cost incurred to
complete all assigned tasks and the agents never changed their expertise.

A more realistic scenario would be to give an agent the freedom of choosing
from one of several help-giving strategies and to change its strategy as dictated
by the environmental conditions. An agent may be inclined to adopt a strategy
if agents using that strategy is observed to be performing better than others.
Such a strategy adoption method leads to an evolutionary process with a dy-
namically changing group composition of agent strategies [3]. In [4], we present a
mathematical model to capture the dynamics of the agent population. Using this
analytical model, one can predict the population distribution of future given the
initial environmental settings. Given the initial strategy profile in the population
and the assigned task load, we have constructed decision surfaces using which a
rational agent can choose the most beneficial strategy for the long run.

2.1 Resisting Free Riding and Collusion in P2P networks

Peer-to-peer (P2P) systems enable users to share resources in a networked en-
vironment. P2P systems are vulnerable to problems including free-riding users
who utilize resources without contributing in turn, collusion between groups of
users to falsely promote or malign other users, and zero-cost identity problem



that allows nodes to obliterate unfavorable history without incurring any expen-
diture. We used a reciprocity-based mechanism to tackle these problems [5]. We
assume each node in the P2P network is managed by a self-interested agent. Our
mechanism rewards an agent by enhancing its probability to receive resources it
requested only when the node itself shares its own resources with other nodes in
the system. This motivates nodes to contribute resources instead of free-riding.

In a P2P network, the tasks can be mapped into resources that an agent
requires at a particular instance of time. Every agent has expertise in resource
type T ∈ Υ where Υ is the set of all such resource types. Agents request resources
of types in which they are not experts from other agents. The probability that
an agent has a particular resource of a given type is much higher if an agent
is an expert in that resource type than when it is not. An agent helps another
agent if it provides a resource that is requested from it. Reciprocative agents
return help, selfish agents try to free-ride. The expected utility of agent m for
interacting with agent o requesting a resource type τ at time T is

ET (m, o, τ) =
∞
∑

t=T

γt−T [
∑

x∈Υ

(Dt
m(x)Prt

m,o(x)costm(x))−
∑

x∈Υ

(Dt
o,m(x)Prt

o,m(x)costm(x))],

where costi(x) is the expected cost that i incurs to procure a resource of type x
by itself, γ is the time discount, and Υ is the set of different area of expertise. The
evaluation of the expected utility of agent m helping agent o considers all possible
interactions in future and for all types of resources. In the above equation, Dt

m(x)
is the expected future distribution of resource types that agent m may require
at time instance t, and Dt

o,m(x) is the expected future distribution of resource

types that agent o may ask from m at time instance t. We define Prt
i,j(x) as the

probability that agent j will share a resource of type x, when requested by agent
i at time step t.

For a sufficiently large agent population, interaction between any two given
agent may be infrequent, and it can take a long time to ensure enough interac-
tion among agents to build up informative interaction histories. To alleviate this
problem, we propose to use a reputation mechanism. In this reputation frame-
work, when an agent m is asked for help by another agent o, m requests other
agents, C, who have interacted with o before to share their experiences about o.
Upon request, the C agents report their complete interaction history with o to
m. The helping agent, m, then uses this information to compute a more accurate
probability of o’s help-offering behavior for different resource types by weighing
its personal experience with o and the average of the probabilities reported by
the C agents. Therefore, the PrT

m,o(x) term in the previous equation is replaced

by PrT
o (x), the reputation of o for providing help for task type x. PrT

o (x), is

calculated as PrT
o (x) = (1−α)PrT

m,o(x)+α
P

a∈A−{m,o} PrT

a,o(x)

|A|−2 where PrT
a,o(x) is

the opinion about o reported by a. These opinions are averaged from all agents
except the interacting parties and the weight α on others opinion is an inverse
function on the number of times m has asked o for help.



Agents, however, may collude to disrupt this mechanism by reporting good
opinions about other colluders to third parties. We propose a Bayesian update
scheme to discriminate between truthful and lying agent. In this approach, re-
ciprocative agents assumes every one to be truthful and then uses a Bayesian
update technique to judge the truthfulness of each agent based on its interaction
experience with those about whom reputation was reported. Subsequently, the
opinions reported by an agent is weighted by its estimated truthfulness. Exper-
imental results showed that our mechanism effectively removes the free-riding,
zero-cost identity and collusion problem in a P2P network.

2.2 Reciprocity between super-peers

Super-peer networks have been proposed to address the issue of search latency
and scalability in traditional peer-to-peer (P2P) networks. In a super-peer net-
work, instead of having a fully distributed systems of peer nodes with similar or
comparable capabilities, some nodes that possess considerable computing power
and resources are designated as super-peers. We address the problem of mutual
selection by super-peers and client peers. In particular, we evaluate alternative
decision functions used by super-peers to allow new client peers to join the clus-
ter of clients under it. By formally representing and reasoning with capability
and query distributions, we develop peer-selection functions that either promote
concentration or diversification of capabilities within a cluster, and evaluate
their effectiveness of different peer-selection functions for different environments
where peer capabilities are aligned or are independent of their queries. Super-
peers are responsible to find other peers which can provide an answer to a query,
either by using peers from its pool of clients, or by requesting help from other
super-peers. Our goal is to dynamically build the network of super-peers from
a fully distributed network and ensure that peers are contributing to the com-
munity. Super-peers use a reciprocity mechanism to ensure that there are no
free-riders in the system [6]. Each super-peer also ensures that all its client peers
are contributing by enforcing load balancing within its cluster of client peers.

3 Learning to solve social dilemmas

Agents in a society are often confronted by social dilemmas. We formulate such
social dilemma as general-sum game repeatedly played by self-interested agents
and use a learning approach to solve such problems. Most exist learning mecha-
nisms developed for game playing assume complete and perfect information, i.e.,
players can observe the payoffs received by all the players. This may not be pos-
sible in a large number of real environments and we assume players can observe
the actions of all other players but not their payoffs. Rather than convergence
to any Nash equilibrium strategy profile, we prefer Pareto-Optimal outcomes
that also generate a Nash Equilibrium payoff (POSNE) for repeated two-player,
n-action general-sum games. We introduce the Conditional Joint Action Learner



(CJAL) which learns the conditional probability of an action taken by the op-
ponent given its own actions and uses it to decide its next course of action [7].

We assume repeated play of a stage game by a set S of 2 agents where each
agent i ∈ S has a set of actions Ai. We use the following notations: Ei

t(ai)
is the expected utility of an agent i at iteration t for an action ai, Pri

t(ai) is
the probability that agent i plays action ai at iteration t, and Pri

t(aj |ai) is the
conditional probability that the other agent, j, will play aj given that the ith

agent plays ai at iteration t. The joint probability of an action pair (ai, aj) at
iteration t is given by Prt(ai, aj).

A CJAL learner is an agent i who at any iteration t chooses an action
ai ∈ Ai with a probability proportional to Ei

t(ai) =
∑

aj∈Aj
Ui(ai, aj)Pri

t(aj |ai),
where aj is the action taken by the other agent. These expectations are learned

by using Q-learning:Ei
t(ai) =

∑

aj∈Aj
Qi

t(ai, aj) ∗
ni

t−1
(ai,aj)

ni
t−1

(ai)
, where ni

t(ai) =
∑

aj∈Aj
ni

t(ai, aj) is the number of times agent i has played action ai until iter-

ation t and Qi
t(ai, aj), the estimated payoff from joint action (ai, aj) is updated

after the (t− 1)th interaction as

Qi
t(ai, aj)← Qi

t−1(ai, aj) + α(Ui(ai, aj)−Qi
t−1(ai, aj)),

where 0 < α ≤ 1 is the learning rate.
We empirically show that under self-play and if the payoff structure of the

Prisoner’s Dilemma game satisfies certain conditions, a CJAL learner, using a
random exploration strategy followed by a completely greedy exploitation tech-
nique, will successfully resolve the Prisoner’s dilemma and produce cooperation.
We also experimentally demonstrated the convergence of CJAL using limited ex-
ploration in self-play to POSNE outcomes on a representative testbed containing
all structurally distinct two-player conflict games with ordinal payoffs. Though
CJAL was not explicitly designed to optimize measures like social welfare, fair-
ness (measured by the product of player payoffs) and success in converging to
POSNE outcomes, it outperforms well-known existing multiagent learning algo-
rithms like JAL and WOLF-PHC on these metrics.

4 Agent-Teaching-Agent (ATA)

Few researchers have addressed the problems of one, knowledgeable, agent teach-
ing another agent. We investigate how an agent can use its learned knowledge
to train a peer agent in its community with a possibly different internal knowl-
edge representation. The knowledge being transferred is a concept description,
a boolean-valued function that classifies input examples as members or non-
members of the target concept. We assume that the trainer agent does not have
access to the internal knowledge representation of the trainee agent, but can
evaluate its concept recognition abilities by asking it to categorize selected ex-
emplars and non-exemplars of the target concept. The trainer agent also do not
have access to the original training set from which it learned its concept de-
scription. We have developed an Agent Teaching Agent (ATA) framework which



focuses on incremental selection of training examples by the trainer to expedite
the learning of the trainee agent [8, 9].

We envisage an iterative training procedure in which alternatively the trainer
selects a set of training and testing exemplars, the trainee trains using the train-
ing set and then classifies the testing set, the trainer observes errors made by the
trainee in classifying the instances in the last testing set and accordingly gen-
erates the next training and testing sets. This iterative process converges when
error of the trainee falls below a given threshold. We now present these iterative
training steps in an algorithmic form:

Procedure Train-Agent(Trainer,Trainee,Domain-Info){
Select initial training set N0 and initial testing set T0 from Domain-Info
i← 0
repeat

Train trainee agent on training set Ni

Let Mi be the instances in Ti misclassified by trainee after training on Ni

Ti+1 ← Ti ∪ newTestInstances(Mi) and Domain-Info
Ni+1 ← Ni ∪ newTrainingInstaces(Mi)
i← i + 1

until |Mi| < threshold}

This procedure needs to be fleshed out to realize an actual implementation.
In particular, we have to specify procedures for selection of the initial training
and testing sets, N0 and T0, and the generation of the next test set Ti+1 based
on the mistakes, Mi, made by the trainee on the current test set. We have
developed these procedures for instance based and decision tree learners to work
on problems with real-valued attributes. When selecting the initial training and
testing instances, the goal is to select the most discriminating examples that
help identify regions of the input space that do and do not belong to the target
concept. For example, if a hyperplane separates instances of the target concept
from non-instances, then points close to and on both sides of that hyperplane
should be selected as initial training and testing set members. When selecting
the next set of training and testing instances, the goal is to first isolate the
mistakes made on the previous test set, and for each of these instances, find a
few neighboring points, use some of them as part of the training data and the
rest as part of the test data in the following iteration. The true classification of
these points will not be known in general, and only their estimated classification,
based on the concept description knowledge previously acquired by the trainer,
can be used.

In our initial experiments with instance-based and decision tree learners as
training and trainee agents we found that incremental training results in rapid
improvement in classification performance of the trainee agent over the entire test
set. The final accuracy is comparable to the accuracy of the trainer’s knowledge
or the trainee’s knowledge if it had access to the original training set. Particularly
interesting results were obtained with the Haberman data set obtained from the
UCI repository: IB2, an instance-based learner, acting as a trainer can train C4.5,
a decision-tree learner, to have better testing accuracy than itself. The trainer
can, via the iterative training process, produce a more competent trainee! We
have used this framework to train new agents joining a team of experts [8].



5 Social learning of norms

Behavioral norms are key ingredients that allow agent coordination where soci-
etal laws do not sufficiently constrain agent behaviors. Whereas social laws need
to be enforced in a top-down manner, norms evolve in a bottom-up manner and
are typically more self-enforcing. While effective norms and social conventions
can significantly enhance performance of individual agents and agent societies
and have merited in-depth studies in the social sciencethere has been little work
in multiagent systems on the formation of social norms.

We have recently used a model that supports the emergence of social norms
via learning from interaction experiences. In our model, individual agents re-
peatedly interact with other agents in the society over instances of a given sce-
nario [10]. Each interaction is framed as a stage game. An agent learns its policy
to play the game over repeated interactions with multiple agents. We term this
mode of learning social learning, which is distinct from an agent learning from
repeated interactions against the same player. We are particularly interested
in situations where multiple action combinations yield the same optimal pay-
off. The key research question is to find out if the entire population learns to
converge to a consistent norm.

The specific social learning situation for norm evolution that we consider
is that of learning “rules of the road”. In particular, we have considered the
problem of which side of the road to drive in and who yields if two drivers arrive
at an interaction at the same time from neighboring roads [10]. When two cars
arrive at an intersection, a driver will sometimes have another car on its left and
sometimes on its right. These two experiences can be mapped to two different
roles an agent can assume in this social dilemma scenario and corresponds to an
agent playing as the row and column player respectively. Consequently, an agent
has a private bimatrix: a matrix when it is the row player, one matrix when it is
the column player. For this problem, we use a bimatrix where both players get
a high value (4) if they choose the same action and a low payoff (-1) otherwise.
Note that either action combinations (0,0) or (1,1) would be equally desirable.
Each agent has a learning algorithm to play as a row player and as a column
player and learns independently to play as a row and a column player. An agent
can observe opponent action but not their payoff. The goal is then for all agent
to develop a norm of choosing the same action consistently.

Each agent is paired in each time period for interaction with a randomly
selected agent from a subset of the population. An agent is randomly assigned
to be the row or column player in any interaction. We assume that the stage
game payoff matrix is known to both players, but agents cannot distinguish
between other players in the population. Hence, each agent can only develop a
single pair of policies, one as a row player and the other as a column player, to
play against any other player from the agent population.

In our initial experiments, any two agents in the population had an equal
probability of interaction. We observed that social learning was successful in gen-
erating consistent norms in the population. The main conclusions of this study
was as follows:



• The number of interactions required to evolve a consistent norm increases with
the population size and the number of actions, m, available to each agent.
• The number of interactions required to evolve a consistent norm varies with
the learning algorithm used by the agents. If different agents used different learn-
ing algorithms (heterogeneous learning population), the convergence rate is in
between the rates for homogeneous populations using the constituent learning
algorithms.
• Different norms producing equal payoffs emerged equally often over different
runs. However, when we introduced non-learners, i.e., fixed-strategy agents who
always chose a given action (for example, always driving on the right), only a
handful of additional non-learners following a given norm compared to others led
to the corresponding norm emerging significantly more often in the population.
• If the population was segregated with very infrequent interactions between
agents belonging to different sub-populations, different norms could emerge in
different sub-population. It was surprising to see divergent norms emerging even
when 25% of the interactions were across sub-populations.

In a more recent paper [11], we have enhanced the interaction model to
study spatial interaction effects on norm emergence. In this enhanced model,
the agents are distributed over space where each agent is located at a grid point.
An agent is allowed to interact only with agents located within its neighborhood
composed of all agents within a distance D of its grid location (we have used the
Manhattan distance metric, i.e., |x1−x2|+ |y1−y2| is the distance between grid
locations (x1, y1) and (x2, y2)). We vary D to allow for different neighborhood
sizes. We have experimented with a society of 225 agents placed on a 15 by 15
grid and using the WoLF-PHC learning scheme.

We present in Figure 1 the dynamics of the average payoff of the population
over a run when all agents are learning concurrently. We conclude that a norm
has emerged in the population when the average payoff of the population reaches
3.5. From Figure 1 we observe that the smaller the neighborhood distance, the
faster the emergence of a norm. This is because, for a given number of iterations,
the agents interact more often with a particular neighbors for smaller neighbor-
hoods. This means that the impact an agent has on another agent is larger when
the neighborhood size is small. In addition, an agent with few neighbors will
encounter few different behaviors from its neighbors, and it is a priori easier to
coordinate with a small set of agents rather than a larger one. the decreasing
interaction frequency between pairs of learners increases the time for exploration
of the behavior space and thereby influences the learning patterns of the agents
in the network.

6 Finding partners

Human and artificial agents routinely make critical choices about interaction
partners. The decision about which of several possible candidates to interact
with has significant importance on the competitiveness, survivability, and over-
all utility of an agent. We assume that an agent has time and resource constraints
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that limit its participation to only a fixed number, k, of relationships or inter-
actions with other agents in a particular time period. Therefore, in a given time
period, an agent is free to choose to interact with any k other agents from a soci-
ety of N agents. A bilateral relationship is established in a time period, however,
if both agents choose to do so. The goal of this research is to investigate the
extent to which well-known, simple learning schemes can identify and sustain
mutually beneficial relationships in these conditions [12].

A number of multiagent learning algorithms have been developed recently
that converge to equilibrium in repeated play. We, however, believe that it is
much more likely that simple, single-agent reinforcement learning techniques will
be used by a large majority of the agents that in open real-world environments.
Therefore, we use Q-learning as the learning algorithm used by our popula-
tion of agents. We do not know of any other research that has attempted such
massively concurrent learning by a large number of utility maximizing agents
using single-agent reinforcement learning techniques where the agent utilities
are closely coupled. Not only is the likelihood of convergence of such interlinked
learning to effective selections unclear a priori, no weak guarantees about perfor-
mance can also be provided. Our experiments, however, show that independent
Q-learning by concurrent learners with sufficient exploration is surprisingly ro-
bust in identifying most of the mutually beneficial relationships in the society.

7 Negotiating fair allocation of resources

We study the problem of autonomous agents negotiating the allocation of multi-
ple indivisible resources. It is difficult to reach optimal outcomes in bilateral or
multi-lateral negotiations over multiple resources when the agents’ preferences



for the resources are not common knowledge. Self-interested agents often end
up negotiating inefficient agreements in such situations. We have developed a
protocol for negotiation over multiple indivisible resources which can be used by
rational agents to reach efficient outcomes [13]. Our proposed protocol enables
the negotiating agents to identify efficient solutions using systematic distributed
search that visits only a subspace of the whole solution space.

We represent a negotiation scenario for allocation of multiple indivisible re-
sources as a 3-tuple 〈A, R,U〉, where A = {1, 2} is the set of agents, R =
{r1, r2, . . . , rH}, H ≥ 2, is the set of H indivisible resources whose allocation are
being negotiated, and U = {U1, U2} is the set of utility functions, where Ui is
the utility function of agent i. Each resource is considered as a negotiation issue.
The negotiating agents must agree on the allocation of the resources.

We assume that the issues or resources are ordered, e.g., lexicographically. We
conceptualize the allocations of the resources as a binary negotiation tree. The
root node represents a null allocation to the agents and then each successive level
represents allocation of the next resource in the order chosen. The left and right
branches at the lth level imply that the lth resource will be allocated to agent 1
and 2 respectively. Each leaf node at level H represents one possible allocation
of the resources and the path from the root node to that leaf node lists the
allocation of all the resources. A negotiation tree is created by the negotiating
agents in a distributed, top-down process starting at the root node. At any level,
agent 1 can only create the right child of a node in the previous level of the tree.
Similarly, agent 2 can only create the left child nodes. Each agent, however, may
choose not to create any of the nodes it can create, and such a node will be
marked as black node and it will be pruned from the negotiation tree.

At each node of the negotiation tree, each agent has a best possible agreement
(BPA) which is the allocation where the resources until the current level are
allocated according to the path from the tree root to this node and the remaining
resources are allocated to this agent. An individually rational agent will prune
a node whose BPA utility is less than the utility it can receive otherwise.

The Protocol to reach Optimal agreement in Negotiation Over Multiple Indi-
visible Resources (PONOMIR) consists of three phases. The first phase consists
of a primary allocation procedure using any one of strict alteration or balanced
alteration protocol to produce a default allocation L. The second phase consists
of distributed formation of the negotiation tree by the negotiating agents where
agents prune nodes as mentioned above. If no nodes are created at level l < H,
the final allocation is L. Otherwise L and the nodes at level H make up the prob-
able agreements Q at the end of the second phase. In the third phase, agents
reach the final Pareto optimal solution by exchanging offers from Q. Agents take
turn in making offers from Q, and the recipient removes agreements from Q that
are dominated by the received offer. When Q cannot be reduced further, an
agreement is picked randomly from it.

Our goal was to develop protocols that lead rational agents to Pareto op-
timal agreements and to increase fairness as much as possible. As a measure
of fairness, we use egalitarian social welfare. PONOMIR is not strategy-proof



and does not guarantee Pareto optimal agreements if agents are arbitrarily risk
seeking. The rational behavior of the agents, who have no prior knowledge of
the preferences of the other agents, depends on their risk attitudes. We assume
that such agents will be cooperative-individually rational which means that i)
an agent will not take any risky action that can lead to an agreement which
produces less utility than what it is already assured of, and, ii) if there exists
two agreements which produces same utility to it but different utility to the
opponent, the agent will agree to accept any of the agreement proposed by the
opponent. PONOMIR guarantees Pareto optimal agreements if the participat-
ing agents are cooperative-individually rational. The agreements reached also
guarantees at least as much egalitarian social welfare as the agreements reached
by the existing protocols.

8 Bidding for bundles in auctions

Agents with preferences for bundles of items are faced with a difficult computa-
tional problem when each of the several electronic auctions sell only one item.
While an optimal bidding strategy is known when bidding for item bundles in
sequential auctions, only suboptimal strategies are known for simultaneous auc-
tions. We investigate a multi-dimensional bid improvement scheme, motivated by
optimization techniques, to derive optimal bids for item bundles in simultaneous
auctions [14].

We consider multiple sealed-bid auctions offering items from the set I. A
valuation function ϑ expresses the bidder’s preferences for bundles or subsets of
items from the set I, i.e., the bidder is willing to pay up to ϑ(I) for a bundle of
items I ⊆ I. Each item i is available only in the single-item single-unit auction
ai. We do not specify the particular auction type but make the exogenous price
assumption: the bids of our bidder do not influence the auction closing prices. An
auction is modeled by the probability distribution Fi of the closing prices of the
item being offered in that particular auction. We assume these distributions to
be continuous, independent, and known by the bidder. In practice approximate
price distributions can be learned from observing electronic markets. When an
auction closes, a closing price pi ∈ [pi, pi] is drawn from the distribution Fi. The
bidder gets the item if it has placed a bid bi greater than or equal to the closing
price, i.e., if pi ≤ bi, and the winning payment is equal to the closing price pi.
All auctions run in parallel and their closing times are not known by the bidder.
The bidder place bids represented by B = (b1, . . . , bN ) ∈ B where B is the bid
domain for all auctions. Replacing a bid is not allowed in this model.

Once all the auctions close, the bidder can compute its utility α(B, P ) where
P = (p1, . . . , pN ) represents the closing prices of all auctions. The set of acquired
items Iac(B, P ) is calculated as Iac(B, P ) = {i ∈ I s.t. pi ≤ bi} and the corre-

sponding utility received by the bidder is α(B, P ) = ϑ(Iac(B, P ))−
∑

i∈Iac(B, P )

pi.

The expected utility is then ᾱ(B) = EP [α(B, P )] which can be calculated as
specified in Proposition 1:



Proposition 1 (Expected utility)

ᾱ(B) =
∑

I⊆I







(

∏

i∈I

Fi(bi)

)





∏

j /∈I

(1− Fj(bj))



ϑ(I)







−

N
∑

i=1

∫ bi

pi

pi fi(pi) dpi,

where Fi(bi) = Pr{pi ≤ bi} =
∫ bi

pi
fi(pi) dpi and fi is the pdf of Fi. Our research

objective is to find a bid vector B∗ which maximizes the expected utility ᾱ:
B∗ = argmax

B∈B
ᾱ(B). Assume that the bidder has decided by some means to bid

the vector B. If B is sub-optimal, there is at least one item whose bid can be im-
proved, i.e., there exist i and δi such that ᾱ(B) < ᾱ((bi +δi)∨B−i) where B−i =
(b1, . . . , bi−1, bi+1, . . . , bN ) and b′i ∨B−i = (b1, . . . , bi−1, b′i, bi+1, . . . , bN ). By
repeating this process, we can realize the best improvement possible for the item
i, which is equivalent to maximizing the function bi 7→ ᾱ(bi ∨B−i).

Definition 1 (Optimal bid for item i) βi(B−i) is the optimal bid for item i
given bids for item j 6= i is fixed: βi(B−i) = argmax

bi∈[pi, pi]

ᾱ(bi ∨B−i).

Proposition 2 (Optimal bid for item i)

βi(B−i) =
∑

I ⊆ I
i ∈ I

∏

j ∈ I
j 6= i

Fj(bj)
∏

l/∈I

(1−Fl(bl))ϑ(I)−
∑

J ⊆ I
i /∈ J

∏

j∈J

Fj(bj)
∏

l /∈ J
l 6= i

(1−Fl(bl))ϑ(J).

To implement this solution approach, an initial bid vector B is chosen and
N components of this bid vector are repeatedly improved in any predeter-
mined order. Improving the bid for item i involves replacing bi by βi(B−i):
B ← βi(B−i) ∨ B−i. We refer to this improvement as single improvement and
the sequence of N improvements as N -sequential improvement. In the bid domain
B, the single improvement can be regarded as going from B to the hyper-surface
bi = β(B−i) by moving parallel to the bi-axes. The process is stopped when no
further improvement can be made. We refer to this sequential bid-improvement
process as a Multi-Dimensional Bid Improvement (MDBI) scheme.

The MDBI algorithm produces optimal bid vectors with infinite random
restarts. As this is infeasible in practice, we evaluated variants of the scheme with
finite number of restarts and carefully chosen starting bid vectors. A surprising
result from these experiments is that good solutions can be achieved without
restarts when items are substitutable, complementary, or are non-related. In
general, small number of restarts can be used to approximate optimal expected
utility in all cases. A desirable property of our algorithm, in contrast to existing
schemes, is its approximately linear time complexity. Experimental results show
that the MDBI scheme scales up effectively with larger number of items.



9 Selecting service providers based on referrals

Agents searching for high-quality services can use either their own interaction
experience or referrals from peer agents. We assume that agents want a quality
of service that exceeds an acceptable performance threshold. The performance of
a resource depends on its intrinsic characteristics and is inversely correlated to
the current workload it is handling. Individual agent satisfaction depends both
on the resource selected and choices made by the other agents. We study efficient
decentralized protocols for finding satisfying resources [15]. Locally optimal ac-
tions can increase the number of conflicts of interests where resources are shared.
Referrals from other agents can help agents find more satisfying service provid-
ers. However, such referrals may cost the referring agent since the load of the
referred provider may increase, with corresponding performance deterioration.

Framework: Let E =< A, R, perf , L, S, Γ > where: (i) A = {ak}k=1..K is the
set of agents, (ii) R = {rn}n=1..N is the set of resources, (iii) f : R×R→ [0, 1],
intrinsic performance function of a provider, (iv) L = A → R+, daily load
assigned to agents, (v) S : A × [0, 1] → [0, 1], satisfaction function for agents,
(vi) Γ = {γ1, . . . , γK}, set of satisfaction thresholds of agents. If a set Ad

n of
agents use the provider rn on day d then the feedback received by every agent

in Ad
n at the end of the day d is perf = f

(

rn,
∑

a∈Ad
n

L(a)
)

. An agent ak ∈ A
d
n

evaluates the performance of rn by the the satisfaction it obtained and is given
by s = S(ak, perf ). An agent is satisfied if s > γk.

Definition 2 (Distribution of agents over providers) We call distribution
of agents over providers the set D = {An}n=1..N where An is the set of agents
using resource rn. The set of distributions is denoted by D.

Definition 3 (Γ -acceptable distribution) A distribution D is said to be Γ -
acceptable if each agent is satisfied by the resource they use in D. The set of
Γ -acceptable distributions is denoted by DΓ .

A Γ -acceptable distribution is an equilibrium concept and our goal is to develop
mechanisms that enable a group of agents to converge to such a distribution.
We present alternative strategies for selecting service providers.We evaluate three
kinds of agents: agents who find providers on their own without using informa-
tion from other agents (No Referral or NR), agents who use referral to locate
providers and are trustful of the referrals received(Referral (Truthful) or RT).

Definition 4 (Entropy) Given an environment where agents are identical and

resource rn has capacity Cn, we call entropy of a distribution D: E(D) =
∑N

n=1 max (0, |An| − Cn).

Each Γ -acceptable distribution has zero entropy. The lower the entropy the
better the distribution since less agents are unsatisfied.

We claim that when agents choose their actions based on local perspective
only, the system is likely to move from a distribution with a low entropy to one



with a higher entropy and vice and versa. Such oscillations can be controlled by
limiting the number of agents moving simultaneously, Kmove. We experimentally
show Kmove has a critical influence on the convergence speed. A high value for
Kmove leads to system oscillations and hence is undesirable.

Experimental results: 1. There exists a lower bound of the number of resources
N∗ for effective system performance. For any agent type, convergence speed is
optimal when N = N∗.
2. For any agent type, performance in Zone I, i.e., for N < N ∗ is worse compared
to performance in Zone II, i.e., for N ≥ N ∗.
3. When N ≥ N∗ for all strategies, i.e., in the range N ≥ 100: RT converges
faster than NR.
4. NR is more robust than other algorithms as it produces convergence for a
much larger range of environments, e.g., only NR leads to convergence within
the iteration limit for N ≤ 20.

Interestingly, systems without referrals appear to be more robust in the sense
they have satisfactory or reasonable performance even for extremely small num-
ber of providers, i.e., for more challenging environments. Referrals, however, do
facilitate convergence when there are a significant number of providers.

10 Detecting malfunctioning nodes in sensor networks

Sensor network applications often require remote, distributed monitoring of in-
accessible and hostile locations. These networks are vulnerable to both physical
and electronic security breaches. Nodes in a sensor network can be hierarchically
organized, where the non-leaf nodes serve as the aggregators of the data sensed
at the leaf level and data collected from the entire network is available at the
root node to users for monitoring the environment. Erroneous data, either from
compromised or defective nodes, can influence the aggregated result and can un-
dermine the effectiveness of the network for effectively reporting data about the
environment. Current research on sensor networks use outlier detection mecha-
nisms by a parent node to detect the erroneous nodes among its children. It is
assumed that the data reported by the children of a node is sampled from the
same distribution and they are of almost equal values. We believe that effec-
tive, distributed attack mechanisms will eschew egregious deviations and report
smaller errors by a colluding group of compromised nodes. We have developed
a distributed reputation framework that can learn to recognize such distributed
attacks over repeated data aggregation periods [16].

The above approaches, however, will be ineffective for networks where the
data sensed vary widely from one portion to another as the data sensed by dif-
ferent nodes are not from the same distribution. In such a scenario, we have
used neural network based learning technique to predict data reported by dif-
ferent nodes. We train the nets offline from sufficient data collected after initial
network deployment [17]. Subsequently, parent nodes monitor their children by
calculating the differences between the value reported by a child node and that



predicted by the net based on the data reported by that node’s siblings. Each
node incrementally updates the reputations of its child nodes based on those
calculated differences. We have used robust schemes like Q learning and a Beta-
reputation scheme to detect the faulty/malicious nodes. We have incorporated
different degrees of node’s physical and geometrical features (e.g varying coordi-
nates of anomalous nodes, the number of malicious nodes, the errors imparted,
data pattern etc) into our experiments and demonstrated robust system perfor-
mance under varying environmental conditions.

11 Detecting deviation from team plans

Effective decentralized control mechanism are required for multiple agents co-
operating to achieve a common goal while limited by computing and commu-
nication limitations and possible security breaches. Multiagent planning tech-
niques computing near-optimal joint-strategies that can handle intrinsic domain
uncertainties. Uncertainties related to agents deviating from the recommended
joint-policy, however, is typically not taken into consideration. We focus on hos-
tile domains, where teams must quickly identify deviations from team plans by
compromised agents. There is a growing need to develop techniques that enable
the system to recognize and recover from such deviations. We have developed
a distributed probabilistic intrusion detection scheme for detecting a particular
type of deviations by team members [18].

The problem of decentralized control can be effectively modeled as a de-
centralized partially observable Markov Decision Process (DEC-POMDP). A
DEC-POMDP is given by a tuple < I, S, {Ai}, {Ωi}, O,
P,R, b0 > where I is the finite set of agents indexed by 1 . . . n, S is a finite set
of states, Ai is a finite set of actions available to agent i and A = ×i∈IAi is
the set of joint actions where a =< a1, . . . , an > denotes a joint action, Ωi is
a finite set of observations available to agent i and Ω = ×i∈IΩi is the set of
joint observations where o =< o1, . . . , on > denotes a joint observation, O is
the observation function given by O(s, a1, . . . , an, o1, . . . , on), the probability of
observing the joint observation (o1, . . . , on) when transitioning to state s after
taking joint action (a1, . . . , an), P is the set of Markovian state transition prob-
abilities where P (s, a, s′) denotes the probability of taking action a in state s
and reaching state s′, R : S × A→ < is the common reward function, and b0 is
the initial belief state for all agents. We assume that the agent’s observations are
independent. Thus the observation function can be represented as O = ×i∈IOi

where Oi(s, a1, . . . , an, oi) is the probability that agent i observes oi given the
joint-action < a1, . . . , an > resulted in state s. The decision problem spans over
a finite horizon T . The policy for agent i, πi is represented by a policy tree. Each
node corresponds to an action and each edge corresponds to an observation that
the agent makes at that time interval. We assume that a centralized planner
computes the policy tree for each agent. The running belief state of agent i at
time interval t is its estimate of the physical states and the observation histories
of the other agents and is given by RBt

i : S × o
t

−i
→ [0, 1] where o

t

−i
are the



t’th observation histories of other agents. We define Belti as the set of all such
possible combinations of physical states and observation histories that have a
positive probability in RBt

i : Belti = {b|RBt
i (b) > 0}. The agents update RBt

i

and Belti with each execution step.

Each agent i maintains a set Vi = {Rj
i} where Rj

i is the reputation of the
jth agent as computed by agent i, ∀j 6= i, and is updated in each iteration by:

Rj
i ←Rj

i − κ(Rj
i )×

∑

∀<s,ot

−i
>∈Belt

max
i

(maxoj∈Ωj
Oj(s,< πi(o

t−1

i
), π−i(o

t−1

−i
) >, oj))−

Oj(s,< πi(o
t−1

i
), π−i(o

t−1

−i
) >, ot

j >))/|Belt
max

i |

where Belt
max

i = {b|RBt
i (b) = maxb′∈Belti

RBt
i (b

′)}. Belt
max

i is a subset of beliefs

most convincing to i. Based on Belt
max

i , i reasons about the last observational
transition that each of the other agents have made. Note, a simple malicious
agent k would often fake observations and this inconsistency would gradually
reflect in the Belti of i and result in a higher value for the numerator. This
would result in a sharp drop of Rk

i . The function κ is monotonically decreasing

with Rj
i and thus facilitates faster detection. We have shown the effectiveness of

this scheme on the Tiger problem [18].

12 Conclusions

While the brief summaries presented here provide only coarse outlines of the
research results, my website (http://www.mcs.utulsa.edu/~sandip) can be
perused both to obtain complete papers with extended discussion on these top-
ics as well as to obtain details on related research of key relevance to the topic of
developing sustainable agent communities. In addition, our research group has
worked on related areas on multiagent learning, trust-based computing, peer-
level negotiation schemes, proactive information dissemination, cooperative se-
curity envelops, etc. that are key components of the set of technologies required
to design, develop and implement self-interested social agents. Such agents must
balance local needs with societal constraints to maximize long-term utility. In
particular, they have to leverage complementary expertise, proactively seek out
collaboration opportunities, and cooperatively avoid unforeseen problems and
inefficiencies. Our ongoing work is focused on techniques and methods to make
our vision of a vibrant, self-sufficient intelligent agent community a reality in the
foreseeable future.
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