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Abstract
Remotely deployed sensor networks are vulnerable to both
physical and electronic security breaches. The sensor nodes,
once compromised, can send erroneous data to the base sta-
tion, thereby possibly compromising network effectiveness.
We assume that sensor nodes are organized in a hierarchy
and use offline neural network based learning technique to
predict the data sensed at any node given the data reported
by its siblings. This allows us to detect malicious nodes even
when the siblings are not sensing data from the same distri-
bution. The speed of detection of compromised nodes, how-
ever, critically depends on the mechanism used to update
the reputation of the sensor nodes over time. We compare
and contrast the relative strengths of a statistically grounded
scheme and a reinforcement learning based scheme both for
their robustness to noise and responsiveness to change in
sensor behavior. We first extend an existing mechanism to
improve detection capability for smaller errors. Next we an-
alyze the influence of different discount factors, including
unweighted, exponential, and linear discounts, on the trade-
off between responsiveness and robustness. We both develop
a theoretical analysis to understand the trade-off and per-
form experimental verification of our predictions by varying
the patterns in sensed data.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Experimentation

Keywords
Sensors, Sensor Networks, Q-Learning, Beta-reputation

1. INTRODUCTION
Wireless sensor networks consist of spatially distributed

autonomous devices using sensors to cooperatively monitor
physical and environmental conditions specially in regions
where human access is limited or carries potential risk. The
size and cost of the sensor nodes impose limitations on the
network capabilities such as speed and bandwidth conditions
and they are susceptible to compromise by the intruders
physically and electronically. A sensor network has at least
one base station (BS), considered as the data sink, where all
other nodes report their sensed and aggregated data.

In traditional data aggregation protocols, a tree hierarchy
is built where the sensor nodes reside at the leaf level and
the non-leaf nodes act as aggregator nodes, aggregating the
data received from their child nodes. Now more than one
node may be damaged or compromised by some unautho-
rized third party to alter the data it sensed or aggregated
and would be transmitting upstream. If a large number of
nodes become anomalous then the entire sensor network may
be compromised and data integrity would be lost. To detect
the faulty nodes and to protect the integrity of the data two
reputation update mechanisms are proposed in [11]. One is
based on reinforcement learning and the other is statistically
grounded (RFSN scheme). These two approaches incremen-
tally update the reputations of the sensor and aggregator
nodes at each time step. Patterns in the sensed data are
learnt using the neural net learning approach on sufficient
data where each trained net predicts the data sensed by a
sensor node. The data for training the neural nets is col-
lected offline simulating environments where there is a wide
variation of the data with time and over the spatial expanse
of the network. The likelihood of a reported data being
faulty is calculated as a function of the difference between
the actual output it measured and value predicted by the
neural net that corresponds to the node given the data re-
ported by sibling nodes in the sensor net hierarchy. The
error likelihoods are used to update the reputations of the
nodes. Nodes are identified to be malicious if their reputa-
tions fall below a specified limit.

Whereas our previous work presented experimental results
showing faster detection with Q-learning approach over ba-
sic RFSN technique, it did not provide detailed analysis of
the underlying cause for such a difference. In this exten-
sion, we analyze the RFSN framework in detail and identify
a basic weakness of the approach if used without time dis-
counting of evidence. We then study the effect of different
time discounting schemes, namely unweighted, linear and
exponential discounting within the RFSN framework. These
categories of the RFSN approach are derived by introduc-
ing a discount factor which could be viewed as the weights
that are applied to the past experiences while computing the
node reputations. We vary the initial data reporting interval
with an error-free network and study the effects of the delay
before malicious node are introduced on the performance of
different reputation schemes. The evaluation criteria is how
fast the nodes get detected when they are compromised.

2. RELATED WORK
Sensor networks, constrained with limited power supply,



memory and computation ability, renders traditional secu-
rity techniques inadequate and requires radically different
power-aware solutions. Recently a lot of work has been
done in securing sensor network applications like key es-
tablishment, secrecy, authentication, robustness to denial-
of-service attacks, secure routing and node capture.

There has been some research in probabilistic key sharing
to establish a secure path between neighboring nodes[10, 2].
From a large pool of symmetric keys, a random subset of
keys is loaded to each sensor nodes, where the number of
keys loaded per node depend on the desired probability of
two nodes having a common key. Neighboring nodes can
establish a secure path if they have a common key. This
scheme has a scalability issue because it consumes memory
to store keys which keeps increasing with growing network
size and also presents the risk that the original key pool can
be constructed if the attacker compromise sufficient number
of nodes.

Cryptography has been adopted as a standard solution to
protect confidentiality, integrity and availability[13, 18, 12].
Faced with the limited power resource problem, symmetric
key encryption is preferable over asymmetric versions. How-
ever SPINS [13] implements symmetric key cryptography
with delayed key disclosure to achieve asymmetric key cryp-
tography. SPINS incorporate both Secure Network Encryp-
tion Protocol (SNEP) which provides data confidentiality,
authentication, integrity freshness and µTESLA [13] which
provides authentication to broadcasts.

Secure routing protocols have been used to maintain nor-
mal operation of sensor networks even when some nodes
have been compromised [3, 9, 1]. Intrusion Tolerant routing
in wireless Sensor Networks (INSENS) [3] works by creating
routing tables at each node, thereby improving communica-
tion between nodes and the base station. INSENS tries to
bypass malicious nodes and nullifies the effect of compro-
mised nodes in the vicinity of malicious nodes.

Most work on data aggregation[4, 7, 6, 15] assumes no
node is malicious. SEF [17] and SDAP [16] has proposed a
secure aggregation approach in presence of malicious nodes,
which can detect and drop false reports. They use a pre
key distribution technique along with cryptography to de-
tect false data injection. However such a scheme has consid-
erable overhead considering the resource constrains of sensor
nodes. Sampling techniques has been used by Secure Infor-
mation Aggregation in sensor networks (SIA) system [14] to
calculate summary report even when a fraction of the nodes
are malicious.

The work proposed in [8] uses beta probability density
functions to combine feedback and derive ratings. Here it
is considered that highly reputed agents should carry more
weight than feedback from agents with low reputation rat-
ing. To take care of this discounting of the feedback is in-
troduced as a reputation function of the agent who provided
the feedback. This acts as a forgetting factor to weight the
relevance of the feedback. Old feedbacks are given lesser
weight than the more recent ones. The proposed technique
in [8] is used here to compare the performance of different
beta reputation schemes along with a reinforcement learn-
ing scheme. The performance metric is the number of cycles
required to detect the anomalous nodes in the network.

3. APPROACH
We assume that the sensor nodes are deployed in a ter-

rain where the data being sensed follows a pattern over the
entire sensed area, e.g., there is a temperature gradient over
the side of a hill where the sensors are deployed. We further
take into consideration the reality of this pattern varying
over time, e.g., the actual temperature sensed will be higher
at daytime than during the night. We assume that the nodes
and the network will function without error for an initial pe-
riod of time after deployment. We take this window of op-
portunity to gather error-free data from which the pattern,
over the sensor field, of the physical parameter being sensed
would be learned from sufficient number of observations [11].

We proposed a framework in the previous work [11] where
each sensor’s reported value is to be predicted based on the
values reported by its neighbors within close proximity. This
means training of as many predictors as there are sensor
nodes. While the training process can be computationally
expensive, depending on the learning algorithm used, the
entire computation is performed offline and hence is not
constrained by the processing limitations of sensor nodes.
Online computation involves use of this learned patterns to
predict sensor values, a straightforward computation with
very little computational cost.

We could have used a number of different learning schemes
to learn the patterns over the sensor field. For this paper, we
have used a backpropagation based neural network learning
scheme as proposed in [11] for its robustness and accuracy
properties.

We expect that data values reported by correctly oper-
ating nodes to be close to their predicted values but it is
likely to have some errors due to environmental variations
and physical characteristics of the sensor nodes. Rather
than making compromise or fault detection decisions based
on just one reported sample, it is imperative that we ob-
serve multiple reportings of data by suspected nodes before
making any conclusions. Hence we use different incremental
reputation update schemes that take a sequence of errors
between predicted and reported values from a given node.
A node is identified to be malicious when the updated rep-
utation falls below a specified threshold.

Here our research goal is to compare the performance
metrics of the different reputation schemes. In this paper
we incorporate different discount or forgetting factors e.g.,
unweighted, linear and exponential with different exponent
values to be used with the statistically grounded approach
(RFSN). The discount factors are used as weights on the
present and the past experiences. We compare the per-
formance of different RFSN based schemes along with the
Q learning approach in terms of the number of cycles re-
quired to detect the malicious nodes. We are interested in
reducing both false positive (the number of correctly func-
tioning nodes which are detected as malicious nodes) and
false negatives (undetected malicious nodes).

4. EXPERIMENTAL FRAMEWORK
The sensor network with n nodes are arranged in a tree

hierarchy with the base station as the root node. Each non-
leaf node in the L-level 1 hierarchy aggregates data reported
to it by its k children and forwards it to its own parent in
turn. The initial error-free data reporting interval is as-
sumed as D and the predefined threshold is considered as a

1There are kl−1 nodes in level l and n =
∑L

l=1 kl−1 where

kL−1 leaf-level nodes are sensing nodes.



fraction p = 0.03 of the maximum reputation a sibling pos-
sesses at a particular iteration. E stands for the entire data
set including training and real time data. For our physical
sensing environment, we assume that the sensors are dis-
tributed over a region with (xi, yi) representing the physical
location of the sensing node i.

We model fluctuations of the sensed data in the envi-
ronment by adding Gaussian noise to the function value
f(xi, yi, t) for the i−th node at time interval t. So, the
sensed value at position (x, y) at time t is computed as:
f(x, y, t) = g(x, y) + h(t) + N(0, σ), where N(0, σ) repre-
sents a 0 mean, σ standard deviation Gaussian noise. We

have used two different g functions, e−(x2+y2) and (x+y)
2

. We
will refer to these two environments as E1 and E2 respec-
tively. We use a simple function h : T → [l, h] that maps a
time to the range [l, h].

In our experiments, we assume that each sensor node adds
a randomly generated offset in the range [0, ε] to the data
value it senses and vary the number of compromised nodes
only at the leaf level,though our mechanism, is capable of de-
tecting faulty nodes at any position in the hierarchy except
the root node, assumed as base station.

4.1 Learning Technique
To form the predictor for a given node i in the sensor net-

work, we use a three-level feed-forward neural network with
k − 1 nodes in the input layer which receives data reported
by the siblings of this node. Each such neural network has
one hidden layer with H nodes and the output layer has one
node that corresponds to the predicted value to be reported
by this sensor node. A back-propagation training algorithm,
of learning rate η and momentum term δ is used with sig-
moid activation function f(y) = 1

1+e−y (where y is the linear

combination of the inputs) for the neural network comput-
ing units, whose outputs are restricted to the [0, 1] range. To
evaluate the strengths and weaknesses of the schemes we fo-
cus on eighty five node network organised in a tree hierarchy
with four children for each internal node and four levels, re-
sulting in 64 sensing nodes at the leaf level. The prediction
success rate for the neural net, after offline training with
data from environments E1 and E2 are 93.3% and 90.6%
respectively. The neural networks used for learning node
predictors have the following parameters: η = 0.8, δ = 0.7,

3 nodes in the input layer, H = 8, and training set size of
4500.

4.2 Reputation management schemes
Algorithm 1 is used online to update the reputation for

each node i at each data reporting time interval based on

relative error εt
i =

∣

∣

∣
1−

reportedt
i

predictedt
i

∣

∣

∣
, where predictedt

i and

reportedt
i are the values predicted for and the actual out-

put by the node i at time t respectively. From this relative
error, an error statistic ℵt

i is computed for updating node
reputation. µi and σi are the mean and standard deviation
of the predicted errors computed offline for node i over the
training set. During online reputation calculation, ℵt

i = 1 if
εt

i ≤ µεi
, otherwise it is evaluated as

ℵt
i = e

−

εt
i
−µi

2σ2σ2

i

Reputation updates are performed by the Q-learning and
Beta-reputation schemes as follows.

Q-Learning Framework: The reputation of every node i

is updated as follows:

Reputation
t
QLi
← (1− α) ∗Reputation

t−1
QLi

+ α ∗ ℵt
i.

We use a learning rate, α, of 0.2 and an initial reputa-
tion, Reputation0

QLi
= 1, ∀i.

RFSN Framework: In Reputation Based Framework for
Sensor Networks (RFSN) [5] framework the correspond-
ing reputation update equation is given by

Reputation
t
βi

=
γt

i + 1

γt
i + βt

i + 2

where γt
i and βt

i are the cumulative cooperative and
non-cooperative responses received from node i until
time t. We assume γ0

i = β0
i = 0 and these values are

subsequently updated as γt
i ← γt−1

i + ℵt
i and βt

i ←
βt−1

i + (1− ℵt
i).

Algorithm 1: DetectMalicious(n, N )

Data: The trained neural net N with set of given
parameters, number of nodes n

Result: Detection of malicious nodes
initialization: Reputation Threshold = 0.4,
∀i, Reputation0

QLi
= 1, Reputation0

βi
= 0;

for t=0;;t++ do

for each sensor node nodei do
Compute relative error: ε;
Compute error statistic: f(ε);
Update Reputationt

QLi
;

Update Reputationt
βi

;

if Reputationt
QLi
≤ Reputation Threshold

then
nodei is malicious according to Q-learning
based reputation mechanism;

end

if Reputationβi
≤ Reputation Threshold then

nodei is malicious according
Beta-Reputation mechanism;

end

end

end

For Beta reputation we introduce different types of dis-
count factors (unweighted, linear and exponential) and study
their effect on reputation calculation while detecting mali-
cious sensor nodes. The discount factor is used as weights
on past positive and negative experiences and enables time
discounting of past interaction experience. So the positive
and negative experiences at time t can be expressed as

β
t
i =

t
∑

j=1

(1− ℵj
i ) · λ

t−j−1
,

γ
t
i =

t
∑

j=1

ℵj
i · λ

t−j−1

where ℵt
i is the likelihood 0 ≤ lambda ≤ 1. For λ > 1 the

above equations correspond to exponential discounting. If
λ = 1, the Beta reputation updates are unweighted and the



resulting equations will be

β
t
i =

t
∑

j=1

(1− ℵj
i )

and

γ
t
i =

t
∑

j=1

ℵj
i .

In our experiments we analyze the characteristics of Beta
reputation by varying λ over the set {1.0, 0.8, 0.6, 0.4, 0.2}.

We also evaluate reputation updates with linear weights
on past experiences:

β
t
i =

t
∑

j=1

(1− ℵj
i ) ·

1

t− j + 1
,

and

γ
t
i =

t
∑

j=1

ℵj
i ·

1

t− j + 1

A node is considered to be malicious if the updated reputa-
tion of any node becomes less than some predefined fraction,
p, of the initial reputation (we have used p = 0.4 in our ex-
periments). We actually use an m-of-n approach where a
node is marked as malicious only if its reputation falls be-
low the threshold in any m of the last n data reporting time
intervals. The m-of-n approach balances number of all false
positives and false negatives. We have used m and n values
of 5 and 7 respectively.

4.3 Results
We carry out experiments to show the relative strengths

of reinforcement learning and Beta reputation schemes with
different discount factors(λ). As performance metric, we use
the iterations taken by these mechanisms to detect the first
and last erroneous nodes. So each experiment returns the
minimum and the maximum cycle time taken for detecting
the malicious nodes. The latter value corresponds to the
time taken to detect all faulty nodes.

The experiments are carried out on the eighty-five node
sensor network and in two different environments E1 and
E2. We run the experiments taking 15 malicious nodes at
sensor level, which is around 25% of the 64 nodes sensing
the data online. In this work we are interested in examining
the influence of the discount factors on the Beta reputation
schemes and compare the performance of the statistically
grounded (RFSN) scheme and the reinforcement learning
Q-learning approach.

For each set of experiments we analyze the outcomes as
follows:

• Compare the performances of unweighted and expo-
nential Beta-reputation schemes, with various discount
factors, in terms of the mean value of the maximum
(minimum) cycle time to detect all the malicious nodes.

• Relative comparison between Q learning approach and
Beta reputation schemes with linear and two extreme
exponential discount factors of λ = 0.8 and 0.2.

We vary the number initial data reporting interval, D when
all nodes are reporting data accurately, i.e., no node is ma-
licious. We report the maximum, minimum and mean of

maximum (minimum) cycle time taken after the malicious
nodes are introduced.

4.4 Observations

4.4.1 Malicious nodes introduced immediately
We first discuss the situation when the malicious nodes

are introduced as soon as the reputation management sys-
tem starts calculating reputations (D = 0). We observe the
following in such situations.

• It is observed from the figures 1(b) and 2(b) that mean
of minimum cycle time for Q learning scheme is slightly
more than that required for the Beta reputation schemes
(with linear and exponential discounting with λ =
0.2, 0.8) for both environments. The first malicious
node is identified within 5 to 6 time steps for all Beta
reputation schemes whereas Q learning takes around
10 iterations.

• From the figures 1(a) and 2(a), it is seen that the mean
of the maximum cycle time for Q learning algorithm
is almost the same (≈ 15 iterations) as that required
for different Beta reputation schemes (Linear and ex-
ponential with λ values 0.8 and 0.2). The time in-
terval (meanMax - meanMin) to capture all the erro-
neous nodes, however, is less for Q learning than that
of Beta-reputation schemes.

4.4.2 Malicious node introduced after some delay
Now we analyze the situation when the malicious nodes

are introduced some time after invoking the reputation man-
agement scheme, i.e., D > 0. We expect that higher D val-
ues will correspond to longer time taken to detect malicious
nodes for all reputation schemes. This is due to the fact
that before becoming malicious nodes will have longer his-
tory of normal performance, and this reputation will have to
be superseded with sufficient number and amount of devia-
tions after the nodes become malicious. Even with time dis-
counting, therefore, longer periods of error-free performance
will necessitate longer periods of erroneous behavior before
a node is accurately identified to have turned malicious. The
actual number of periods taken before such detection will,
however, be a factor of the repuation management scheme
and the learning rate and discount factors used therein.

• It is interesting to see from the graphs 1(b) and 2(b)
that when the nodes become malicious after some data
reporting intervals, the performance of the Beta-reputation
schemes, irrespective of the value of discount factor,
become gradually worse in comparison to that of the
Q-learning scheme. We have examined the perfor-
mances of both the schemes with the initial error-free
time interval set D = {10, 20, 30, 40, 50}. Such de-
lay of onset of malicious data affects the performance
of the Beta-reputation schemes and the mean of min-
imum cycle time increases significantly. In general,
lower values of λ produces slightly better detection
times (we discuss this in more detail later). When
D = 10, the means of minimum cycle for detecting a
malicious node for different Beta reputation schemes
take around 25 iterations in both E1 and E2. When
D = 50, these values range from 110 to 140 cycles,
for different λ values, and 100 to 120 cycles for distri-
butions E1 and E2 respectively. On the other hand,
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Figure 1: Maximum and minimum cycle of anomaly detection for eighty-five node network for environment
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Figure 2: Maximum and minimum cycle of anomaly detection for eighty-five node network for environment

E2.

the Q learning scheme takes the corresponding values
around 18 (D = 10) and 55 (D = 50) cycles respec-
tively in both environments E1 and E2.

• Similar phenomena are observed for the mean values
of the maximum cycle time for both the distributions
as shown in the Figures 1(a) and 2(a). For different
Beta reputation schemes, we observe that the means
of maximum cycle time lie between 50 and 90 for envi-
ronment E1 and 45 and 50 for E2 when D = 10. The
corresponding values for Q learning scheme are 30 and
25 cycles for E1 and E2 respectively. For D = 50 the
corresponding values for Beta reputation schemes lies
between 325 to 400 cycles for environment E1 and be-
tween 200 and 225 iterations for environment E2. The
Q learning scheme takes almost the same mean maxi-
mum detection times (≈ 70 cycles) for both the envi-
ronments for D = 50. The relative advantage of the
Q-learning scheme is likely to only increase with fur-

ther delays in onset of malicious nodes, i.e., for higher
values of D.

• The performance of the Beta-reputation scheme with
linear discount factor lies between that of the Beta-
reputation scheme with two limiting discount factors
λ = 0.8 and λ = 0.2 (see Figures 1(a), 2(a), 1(b)
and 2(b)). The scheme with linear discount factor
performs slightly better than that with λ = 0.8 but
is somewhat slower to detect malicious nodes when
compared with the Beta-repuation scheme with λ =
0.2.

4.4.3 Effect of discount factors
We now analyze the behavior of Beta reputation schemes

with different exponential discount factors (λ). From the
Figures 3(a), 4(a), 3(b) and 4(b), it is observed that the
performance of the Beta-reputation with the least discount
factor λ = 0.2 gives the minimum mean value for both the
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Figure 3: Cycle of anomaly detection for different Beta-reputation schemes for distribution e−(x2+y2) in eighty-

five node network.
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in eighty-five

node network.

minimum and maximum detection time for both the envi-
ronments irrespective of error-onset delays, i.e., different D

values. The number of cycles required for detecting the ma-
licious nodes increase with the increasing λ values. This is
because higher λ values correspond to longer-lasting memo-
ries and hence more time is needed for errors reported after
introduction of malicious behavior to supersede the previous
correct data reported by those nodes for the first D data in-
tervals. When the discount factor becomes 1, the reputation
update is unweighted. So it takes the maximum amount of
time to detect the malicious nodes and results in the worst
performance.

4.4.4 Effect of environment
From the Figures 3(b) and 4(b) we observe that, for the

RFSN based approach with different exponential discount
factors, the mean of both the minimum and maximum time
required to detect a malicious node for environment E1 is

greater than that for environment E2 for different values of
D.

4.4.5 Additional observations
We further note that for our experimental settings, we

have not observed any false positives or false negatives. As
observed this depends on the values of n and m used in the
m-of-n detection procedure. While we provide no guaran-
tees, it is encouraging to observe such robust performance
of these approaches.

A pertinent question is what makes the Q-learning based
reputation management schemes a faster mechanism com-
pared to the Beta-reputation approach. Note that when
the discount factor in the Beta-reputation system is comple-
mentary to the learning rate in the Q-learning approach, i.e.,
λ = (1−α), the Reputationi and γi updates put equal weight
on the past experiences. The new experience is weighted by
α in the Q-learning approach, and is unweighted in the up-



date of γi. Additionally the actual Beta-reputation calcula-
tion computes a ratio that includes the βi factor. We believe
this combined effect affects the responsiveness of the Beta
reputation scheme. We plan to do more detailed experimen-
tation and analysis to shed further light on this issue.

5. CONCLUSION
In this paper we compared different, time-discounting vari-

ations of the Beta-reputation scheme and a repuation scheme
based on standard reinforcement learning approach, to man-
age the repuations of nodes in a sensor network organized
in a hierarchy. We assume the availability of data from
an error-free network which is used by a neural network
based learning technique [11] to learn the correlations in data
sensed by different nodes. Different environments are used
to represent different correlation patterns. Subsequently, on-
line reputation management schemes update node reputa-
tions based on differences between the data they report and
that they are predicted to report based on data reported
by their siblings in the sensor net hierarchy. The goal is to
quickly detect all malicious nodes that consistently or pe-
riodically report errors with small offsets to influence the
aggregate data reported to the base station of the sensor
network. We study the responsiveness of different reputa-
tion management schemes by varying the time delays before
introducing malicious nodes.

A malicious node is recognized when its reputation con-
sistently falls below a pre-specified threshold. We have con-
sidered the computation of incremental reputation based on
Q learning based approach and Beta-reputation approach
with different discount factors represented as the weights
over the past experiences. We experimented with a eighty-
five node network arranged in a four-level hierarchy. We
found that for two different environmental patterns all the
randomly generated malicious nodes are detected even when
upto to 25% of the sensor nodes are malicious. We have
compared the results of the reputation schemes mentioned
in terms of number of cycles to detect the first and all ma-
licious nodes. We vary the length of the initial error-free
data reporting interval before introducing malicious nodes.
As this period increases all schemes take more time to de-
tect malicious nodes. Lower discount factors for exponen-
tial weighting in Beta-reputation, that uses lower weights for
past experiences, are found to be more responsive. Linear
weighting schemes are found to be better than unweighted
schemes and compare better than some weighted schemes
while performing worse than others. The Q-learning algo-
rithm, however, performs increasingly better in comparison
to all the Beta-reputation scheme variants.

We are working on studying, in more detail, the changes
in the reputation values, as calculated by the different rep-
utation management schemes presented here, for a given
sequence of data. The goal is to understand what makes
some of these schemes more responsive than others. By
clearly identifying the strengths and weaknesses of these ap-
proaches, we hope to develop a hybrid scheme that will be
more robust than any individual scheme discussed above.

We also intend to extend our work to analysis the perfor-
mance of these repuation management schemes on more so-
phisticated collusion, where malicious nodes may take turns
to report higher errors.
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