
On the Rationality of Cycling in the Theory of Moves
Framework

Jolie Olsen
University of Tulsa

Tulsa, OK
jolie.d.olsen@gmail.com

Sandip Sen
University of Tulsa

Tulsa, OK
sandip@utulsa.edu

ABSTRACT
Theory of Moves (TOM) is a novel approach to game the-
ory for determining rational strategies during the play of
dynamic games [2]. While alternate models such as nor-
mal form games exist, players of these games are limited to
single shot interactions with each other, but within TOM,
sequences of moves and counter moves are allowed. As a con-
sequence of this framework potential cyclic behavior may
arise. Unfortunately, standard TOM framework suggests
that agents do not move from the initial state if the possi-
bility of cyclic behavior is detected. However, in a plethora
of real life scenarios, cycling can benefit a player over time.
We first extend the TOM framework by allowing agents to
choose how much time to stay in each state while speci-
fying time limits for moves. This generalization allows for
cycling behavior in addition to normal, acyclic TOM play.
We present additional rationality rules to handle the choice
of move time and cyclic play and identify conditions for the
existence of solutions that involve cycles. Moreover, if so-
lutions do exist, equilibria are determined so a player can
predict the rational outcome upon engaging a cycle. A vari-
ety of time constraints on move times are investigated and
the effects of these contrasts on the solution space and equi-
libria are analyzed.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Theory, Economics, Algorithms

Keywords
Theory of Moves, Cyclic behavior

1. INTRODUCTION
Reasoning and learning mechanisms in single stage games

continue to be an active research area in multi agent sys-
tems [1, 3, 5, 6, 8, 9, 7]. To handle situations in which
agents engage in a natural move-counter move process or
take decisions as a function of some initial state extensive
form game frameworks have been studied with solution con-
cepts including subgame perfect equilibrium [4]. In these
games, both the start state and the initial player is specified
and a finite game tree, without cycles, is analyzed to derive
equilibrium strategies [7]. While this model does address

scenarios where agents can alternate moves, it still does not
adequately address scenarios where two or more agents are
considering their options from a state of the world, where
any of the agents can be the first mover and where there is
a possibility of cycling between world states.

Steven J. Brams’s 1994 book Theory of Moves provides
a complete information game framework where play com-
mences at a particular state and subsequent moves are deter-
mined from a finite lookahead in conjunction with backward
induction analysis, resulting in convergence to Non-Myopic
Equilibrium(NME) [2]. For certain 2 × 2 games, the initial
state is the NME. This can happen by players realizing they
have no benefit to move (for example, if the initial state is
mutually preferred), or realizing that making an initial move
results in a cycle back to the initial state. Though agents in
the standard TOM framework do not move if doing so will
result in a cycle, average payoff over a cycle may be of higher
utility for agents than being stuck in any particular state.
Consider a price war between businesses over a commonly
offered good. While the businesses might cycle around even-
tually offering the same initial price, during each price level,
products continue to be sold, and the overall profit for a
business is a function of the time spent at each price point.
While certain states might prove lucrative for certain agents
(a price hike), others might be disadvantageous. Is it ratio-
nal to engage in the cycle expecting that gains in desired
states will offset the loss in others?

If we modify rationality rules of TOM and incorporate
strategizing for time spent in each state and indefinite game
play, equilibria solutions must be analyzed to determine
which solutions, if any, are stable in the long run. We study
different time constraints on moves in a cycle for a player
and show that only certain time choices can be rational. We
further construct a meta-matrix with those limited time op-
tions to derive equilibria in terms of time spent at each state.
Our analysis produces a complete specification of when to
cycle and how much time to spend at each state where an
agent can choose to move in TOM play.

The rest of this paper is organized as follows: Section
2 proposes revised rationality rules for TOM to account for
dynamic utility, time constraints, and cycle constraints; Sec-
tion 3 shows how non-cyclic games are still supported under
the new framework, Section 4 explores games of a cyclic na-
ture in which maximum time limits are specified while Sec-
tion 5 explores cyclic games with no maximum time limit
on play. Finally, Section 6 provides a brief conclusion and
insight into future research. We note that our analysis is
limited to games for which minimum time limits are always
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Figure 1: Game 1

specified on play. This is because if no minimum time lim-
its were specified, trivially players would continually deviate
from any given solution by reducing time spent in decision
states that were not its most preferred.

2. GAME DESCRIPTION
The TOM framework has the capacity to model move-

counter-move processes between players, but disallows cy-
cles, focusing on payoff received in terminal states. Conse-
quentially how long players might spend on any given de-
cision state is disregarded. In games of dynamically dis-
tributed utility, time restrictions may have a significant im-
pact on optimal strategy selections, especially where cycling
is concerned. Augmenting the TOM framework to allow for
cyclic play necessitates an overhaul of game execution and
such a revision is presented below.

2.1 Game Constraints
We can specify time constraints on a game G by use of

an interval I = [ε,M ], where M is the maximum time each
cycle any player may spend, combined, in its decision states;
and ε is the minimum time each player must spend in each
decision state. For games with no time maximum time limit,
we need only let M →∞.

2.2 Notational Conventions
For the cth round of an m-player, n-state cycle in a game

G, each player pk has dk decision states and associated strat-
egy sck = (0, 0, ..., tk1 , ..., t

k
2 , ..., t

k
dk
, ..., 0), where tki specifies

how long pk spends in its ith decision state in the cycle. A
game solution Sc is an n-tuple composed of all player strate-
gies specifying entirely the time each player in the game will
spend in each state of the cycle.

Sc =
∑
∀p

(sck) = (t1, t2, ..., tn) (1)

T is the sum of all time values in Sc (the total time spent
in the cycle if Sc is used). pk has valuation function vk(Si)
describing valuation for each state Si in G, and utility func-
tion, uk(Sc) describing its utility for round c if Sc is used.

uk(Sc) =

n∑
i=1

(
ti
T )(vk(Si) (2)

Example of Notation:.
Consider Game 1 diagramed in Figure 1 for subgame orig-

inating at (3,4) with initial player R and I = (0,10]. R and
C ’s decision states are (3,4) (1,1), and (2,2) (4,2); respec-
tively. Suppose R and C, for the cth round, have strategies
scR = (2, 0, 1, 0) (indicating R will spend 2 seconds in (3,4)
and 1 second in (1,1)), and scC = (0, 4, 0, 8) (indicates C will
spend 4 seconds in (2,2) and 8 in (4,2)). Then the associated
solution for that round is Sc = (2, 4, 1, 8), with T = 15, and

R C R C
(r1, c1) (r2, c2) ... (rb, cb) ... (rn−1, cn−1) (r1, c1)
[rb, cb] [rb, cb] ... [rb, cb] ... [r1, c1]

Figure 2: Non-cyclic Game

the utilities for each player are:

uR(Sc) = (
2

15
)3 + (

4

15
)2 + (

1

15
)1 + (

8

15
)4 =

47

15
≈ 3.13

uC(Sc) = (
2

15
)4 + (

4

15
)3 + (

1

15
)1 + (

8

15
)2 =

37

15
≈ 2.46

2.3 Modified TOM framework
In TOM, play starts at an outcome determined by an ini-

tial strategy profile chosen by the players. Either player can
unilaterally switch its strategy, thereby changing the initial
state into a new state. Players take turns moving until one
player declines and the game terminates in the correspond-
ing state. We now present an augmentation of basic TOM
play to account for time and dynamic utility where t is the
current time step, tkr is player pk’s time remaining for the
current cycle (initially set to T ), Ukt is pk’s utility at t, Ukf
is pk’s final utility, and tc is time spent in the current state.
tc and t are initialized to 0, tkr to M (the maximum time
allowance per iteration), and Ukt and Ukf are initialized to

vk(S0), (pk’s valuation for state S0).

1. Initial Move If player pk makes an initial move after
t0, then tkr ← tkr − t0, t ← t + t0. If neither player
makes an initial move by b, game play terminates.

2. Subsequent Moves Given current state Si, current
player pk, and current values tc and t:

• tc ≥ tkr : Play terminates and ∀ players pm:

Umf ←
[

t

(t+ 1)

]
Umt +

[
1

(t+ 1)

]
vm(Si);

• tc < tkr and pk decides to remain in Si: tc ← tc+1,
t← t+ 1, and ∀ players pm

Umt ←
[

(t− 1)

t

]
Umt−1 +

[
1

t

]
vm(Si);

• tc < tkr and pk moves to state Sj 6= S0: then
tkr ← tkr − tc, t← t+ 1, tc ← 0, and ∀ player pm:

Umt ←
[

(t− 1)

t

]
Umt−1 +

[
1

t

]
vm(Si);

• tc < tkr and pk moves to state Sj = S0: a cycle
occurs. t← t+ 1, ∀ players pm, tmr = b and

Umt ←
[

(t− 1)

t

]
Umt−1 +

[
1

t

]
vm(Si).

Notice if M = ∞, the algorithm provides no clear play
termination and hence no calculation of final utility. In such
games, for each player pk

Ukf = lim
t→+∞

(Ukt ) (3)
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Figure 3: Arbitrary Game

R C R C
(a,w) (b,x) (c,y) (d,z) (a,w)
[a,w] [a,w] [a,w] [a,w]

Figure 4: Diagram of Backwards Induction for Ar-
bitrary, Cyclic, 2 × 2 Subgame

3. NON-CYCLIC GAMES
Our rules are not limited to describing games of a cyclic

nature. The revised paradigm can characterize a non-cyclic
game such as the one in Figure 21 in the following way:
define time constraints so that M =∞, and consider a solu-
tion S1 = (t0, t1, ..., tb−1,∞,−, ...,−), meaning R makes an
initial move after t0, C moves after t1, etc. Then:
URt0 = r1

UR(t0+t1) =

[
t0

t0 + t1

]
UR(t0+t1−1)+

[
t1

t0 + t1

]
(c2) =

r1t0 + c2t1
t0 + t1

Let t∗ =

b−1∑
i=0

(ti), then the utility for R at the bth state is:

URt∗+1 =
r0t0 + c1t1 + ...+ cb−1tb−1 + (1)rb

t∗ + 1
R blocks at (rb, cb) and will chose not to move in any fu-

ture time steps, so game play is “caught” in rule 2(b), and
for all t > b, R’s utility will be:

URt =

[
t− 1

t

]
UR(t−1)+

[
1

t

]
(rb) =

r0t0 + c1t1 + ...+ rb(t− t∗)
t

By equation 3, URf =

[
t0(r0 − rb) + t1(c1 − rb) + ...+ rbt

t

]
= lim
t→+∞

rb
t

= rb

Similar analysis proves the same for opponents: player’s
utilities converges to (rb, cb), in accordance with TOM.

4. CYCLIC GAMES UNDER MAX TIME RE-
STRAINTS

Both traditional TOM and the revised paradigm result
in identical equilibria solutions for non-cyclic games, but
our real goal is to study cyclic games so we can analyze
when it is rational for players to engage cycles. We first
turn our attention to games with a maximum time limit
specified about each cycle. We begin by determining the
optimal strategy for a player pk if we assume it will cycle and
then propose construction of a meta matrix to predict global
long term game solutions that will result as a result of using
these optimal strategies, or emergent unstable behavior to
determine if cycling itself is rational.

We limit our discussion to 2×2, strictly ordinal games. pk
2

has two decision states per round and seeks an optimal time
strategy si = (tk1 , t

k
2) given time constraints ε,M . WLOG,

suppose pk prefers its first decision state.

1G is non-cyclic under TOM because R prefers (rb, cb) and
will blocks here.
2pk’s opponent is henceforth denoted as pk̄

4.1 Rational Time Spent in Least Preferred
Decision State

Because pk only has two decision states each cycle, it
would be useful if it had a clear decision on how long to
stay in one of these states which was independent of the
other. The following theorem provides such a result.

Theorem 1. If there is a minimum time limit ε each de-
cision state, a player should never spend more than ε time
in its least preferred decision state.

Proof. For an arbitrary cycle of game G with initial
player pk, let pk and pk̄ have feasible strategies sk = (δ1,δ2)

and sk̄ = (tk̄1 , t
k̄
2), respectively. The solution composed of

these strategies, S = (δ1,tk̄1 ,δ2,tk̄2), with T = δ1 +tk̄1 +δ2 +tk̄2 ,
generates the following utility for pk:

upk (S) =
δ1
T a+

tk̄1
T b+

δ2
T c+

tk̄2
T d

sk feasible ⇒ M − ε ≥ δ1, δ2 ≥ ε, and G is cyclic so pk
prefers the second state the least out of the two. Assume
δ2 > ε. Now let δ3 = δ2−ε and consider an alternate strategy
for pk as sk∗ = (δ1 + δ3, δ2 − δ3). Note that δ1 + δ3 >
δ1 ≥ ε and δ2 − δ3 = ε so sk∗ is feasible. The solution
composed of sk∗ and sk̄, S∗ = (δ1 + δ3,tO1 ,δ2 − δ3,tO2 ) with

T ∗ = (δ1 + δ3) + tk̄1 + (δ1 − δ3) + tk̄2 = δ1 + tk̄1 + δ2 + tk̄2 = T
generates the following utility for pk:

uk(S∗) = (
δ1 + δ3
T ∗ )a+ (

tO1
T ∗ )b+ (

δ2 − δ3
T ∗ )c+ (

tO2
T ∗ )d

This game is cyclic ⇒ a > c⇒ ta− tc > 0, so ∀t > 0

uk(S∗) = (
δ1 + δ3
T ∗ )a+ (

tO1
T ∗ )b+ (

δ2 − δ3
T ∗ )c+ (

tO2
T ∗ )d

= (
δ1 + δ3
T )a+ (

tO1
T )b+ (

δ2 − δ3
T )c+ (

tO2
T )d

= (
δ1
T )a+ (

tO1
T )b+ (

δ2
T )c+ (

tO2
T )d+

[
(
δ3
T )a− (

δ3
T )c

]
> (

δ1
T )a+ (

tO1
T )b+ (

δ2
T )c+ (

tO2
T )d = uk(S)

∴ if δ2 > ε, R always has incentive to deviate from S by
switching strategies from sR to sR∗. Since the choice of δ2
was arbitrary, and because the result did not depend on the
order of game play, this means that for any player, it is not
rational to spend more than ε time in the least preferred
state.

4.2 Rational Time Spent in Most Preferred De-
cision State

Because of the previous result, we might be naturally in-
clined to assume that pk should spend all remaining time in
its most preferred decision state. Coupled with Theorem 1
this would indicate that pk’s optimal strategy would always
be s = (M − ε,ε). We provide a counter example showing
this is not true, but state this as a theorem so as to discuss
the intuition behind why this is not generally the case.

Theorem 2. It is not always rational to spend the max-
imum time in the most preferred decision state

Proof. Compare two arbitrary strategies for pk: one
where the most preferred state is maximized and one where
it is not: sk = (M − ε, ε) and (2) sk∗ = (M − ε− δ, ε) where
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Figure 5: Example 1

M − ε > M − ε − δ > ε, respectively. Assume pk̄ has fea-

sible strategy sk̄ = (tk̄1 , t
k̄
2). The associaited solutions are

S = (M − ε, tk̄1 , ε, tk̄2) and S∗ = (M − ε − δ, tk̄1 , ε, tk̄2), with

T = M − ε+ tk̄1 + ε+ tk̄2 = M + tk̄1 + tk̄2 , and the associated
utilities for pk are given by:

uk(S) = (
M − ε
T )a+ (

tk̄1
T )b+ (

ε

T )c+ (
tk̄2
T )d

uk(S∗) = (
M − ε− δ
T − δ )a+ (

tk̄1
T − δ )b+ (

ε

T − δ )c+ (
tk̄2
T − δ )d

Consider the following sequence of equivalent statements:

T > (M − ε)
δT > δ(M − ε)(because δ > 0)

T (M − ε)− δT < T (M − ε)− δ(M − ε)
(M − ε− δ)

(T − δ) <
(M − ε)

T
(because T > 0, T − δ > 0)

(M − ε− δ)
(T − δ) a <

(M − ε)
T

a (assuming payoffs are positive)

(M − ε− δ)
(T − δ) a =

(M − ε)
T

a− k1 for some k1 > 0

(
tk̄1

T − δ )b > (
tk̄1
T

)b

(
tk̄1

T − δ )b = (
tk̄1
T

)b+ k2 for some k2 > 0

(
ε

T − δ )b = (
ε

T
)b+ k3 for some k3 > 0

(
tk̄2

T − δ )b = (
tk̄2
T

)b+ k4 for some k4 > 0

Then uk(S∗) = uk(S) + k2 + k3 + k4 − k1

= uk(S) +

[
tk̄1δ

T (T − δ)

]
b+

[
εδ

T (T − δ)

]
c+

[
tk̄2δ

T (T − δ)

]
d−[

(T − (M − ε))δ
T (T − δ)

]
a

= uk(S) +
(tk̄1δ)b+ (εδ)c+ (tk̄2δ)d− (T − (M − ε))δa

T (T − δ)
= uk(S)+

δ

T (T − δ)

[
tk̄1δb+ εδc+ tk̄2δd− (T − (M − ε))δa

]
= uk(S) +

δ

T (T − δ)

[
tk̄1(b− a) + tk̄2(d− a) + ε(c− a)

]
δ

T (T − δ) > 0⇒ uk(S∗) > uk(S) ⇐⇒

tk̄1(b− a) + tk̄2(d− a) + ε(c− a) > 0 (4)

If eqn 4 is true, then pk’s rational choice is to select the
strategy associated with S∗, sk∗ = (M − ε− δ, ε).

The proof hinges on the truth of eqn 4, but is such a sit-
uation feasible? Consider game in Figure 5 for the subgame
with initial player R and initial state (2,3). Assume C has

strategy tC = (δ, ε). Then tC1 (b − a) + tC2 (d − a) + ε(c − a)
= 2δ + ε − ε > 0, and according to eqn 4 it is not rational
for R to select the strategy that maximizes its time in the
initial state, sR = (M − ε, ε), because there exists some δ,
where M − ε > M − δ > ε, such that the alternate strategy
sR∗ = (M − δ, ε) will award a higher utility. Following the
current example, if ε = 1 and M = 10 and C ’s strategy is
(ε, ε), then consider two solutions: S = (M − ε, tC1 , ε, tC2 ) =
(9, 1, 1, 1) and S∗ = (M − ε − δ, tC1 , ε, tC2 ) = (9 − δ, 1, 1, 1)
where δ = 1. Then the utilities for R are uR(S∗) = 2.16 and
uR(S∗) = 2.18. Clearly R should not maximize the time it
spends in the initial state. This counter example provides
evidence that it is not always optimal for a player to spend
the maximum remaining time in their most preferred state.

4.2.1 Selecting δ

We showed pk’s most rational decision is to spend no more
than ε time in its least preferred decision state but the choice
of how much time to spent in the most preferred decision
state is not always so trivial: there are games where there
exists δ with M − ε > M − δ > ε, such that spending M − δ
time in the most preferred state will result in a higher utility
as opposed to spending M − ε time there. If pk̄’s strategy is

(tk̄1 , t
k̄
2), pk seeks to find δ such that the associated solution

S = (M − δ, tk̄1 , ε, tk̄2) maximizes uk(S).
Because uk(S), is continuous on the closed bounded inter-

val [ε,M − ε], we are guaranteed it will attain a maximum
at some point on this interval and that this maximum will
occur either on the endpoints of the interval or at a critical

point where
∂uk

∂δ
= 0

∂uk

∂δ
=
tk̄1(b− a) + tk̄2(d− a) + ε(c− a)

M − δ + ε+ tk̄1 + tk̄2
(5)

M − δ+ ε+ tk̄1 + tk̄2 > 0 so a critical point occurs only when:

tk̄1(b− a) + tk̄2(d− a) + ε(c− a) = 0 (6)

We digress to notice if eqn 6 is true, δ has no impact, which
is only possible if uk is constant. We’re inclined to discover
this constant to determine if cycling is rational in this case.

Solving for tk̄1 and plugging in to the utility function reveals:

uk(S) =
(M − δ)
T a+

t1
T b+

ε

T c+
t3
T d

=
(M − δ)a+ tk̄1b+ εc+ tk̄2d

T

=
(M − δ)a+ tk̄1b+ εc+ tk̄2d

M − δ + tk̄1 + ε+ tk̄2

=

(M − δ)a+

[
−tk̄2(d− a)− ε(c− a)

(b− a)

]
b+ εc+ tk̄2d

M − δ +

[
−tk̄2(d− a)− ε(c− a)

(b− a)

]
+ ε+ tk̄2

=
(b− a)(M − δ)a+ tk̄2ab+ εab− εac− tk̄2ad

(b− a)(M − δ)− tk̄2d− εc+ εb+ tk̄2b

= a

[
(b− a)(M − δ) + tk̄2b− tk̄2d+ εb− εc

]
[
(b− a)(M − δ) + tk̄2b− tk̄2d+ εb− εc

]
= a



Because pk prefers its first decision state, this shows that
when eqn 6 is true, so long as pk minimizes time spent in its
least preferred decision state, it will fare no better or worse
if it decides to cycle.

Continuing our search for optimal δ selection, notice now
that if equation 6 is false there are no feasible δ > 0 which
give critical points, indicating the max and min values occur
on the end points of I at either δ = ε or δ = M − ε. To
decide which end point maximizes uk, we need only examine

the sign of
∂uk

∂δ
. Three cases arise:

1. tk̄1(b− a) + tk̄2(d− a) + ε(c− a) > 0
Increasing δ results in increased uk, so pk’s optimal
strategy is (ε, ε). Notice this agrees with the analysis
of inequality 4 which we used to construct a counter
example as to why a player should not always maxi-
mize the time it spends in its most preferred state.

2. tk̄1(b− a) + tk̄2(d− a) + ε(c− a) < 0
Increasing δ results in decreased uk, so pk’s optimal
strategy is (M − ε, ε)

3. tk̄1(b− a) + tk̄2(d− a) + ε(c− a) = 0
Selection of δ has no impact on utility so pk is prefers
(ε, ε) and (M − ε, ε) equally.

4.3 Meta Matrix Construction
In the preceding section, we saw that pk is indifferent to

cycling when case eqn 6 is satisfied. But what about cases
1 and 2? We were able to construct each player’s rational
strategy if it were to cycle, but how do we know when cycling
is the rational decision? Because pk’s strategy about a cycle
is dependent upon pk̄’s and since players may deviate from
strategies each decision state, pk must predict the long term
consequences of cycling on the dynamics of pk̄’s strategy
selections before determining if cycling is rational.

Pure Nash Equilibria3 solutions occur when no player has
an incentive to deviate from their contributing strategy, and
the previous analysis indicates the only viable candidates
are strategies of the form (M − δ, ε) with δ on either end
the interval [ε,M − ε]. We can construct a “meta matrix”
like the one pictured where action profiles for each player
consist of these strategies and each square corresponds to
the solution composed of the intersecting player strategies.4

Payoffs are derived from the utility functions and describe
the net difference in utility incurred for a cycle using the
solution associated with that square. NE in a meta matrix
indicates a stable strategy set which in turn corresponds to a
stable game solution. When a meta matrix lacks NE, players
will engage in a constant cascade of deviation to different
extremes of δ, cycling about the squares of the meta matrix
itself. An agent can use the following procedure then to
determine if cycling is rational:
(1) Construct meta matrix and assign payoffs using Equa-
tions 7 and 8.
(2) If all payoffs in the meta matrix are positive for a player,

3For the remainder of the paper, NE refer to pure Nash
Equilibria
4Example: For a game where R, C prefer their first de-
cision state, the top left outcome corresponds to both
players selecting δ = ε, resulting in overall time strategy
(M − ε,M − ε, ε, ε).

it is rational for it to induce the cycle.
(3) If a NE exists and the payoffs for a player is positive, it
is rational for it to induce the cycle. Conversely, if payoff is
negative, cycling is irrational.
(4) If no NE exist, but the average payoff about the meta
matrix for a player is positive (negative), it should (should
not) cycle.

Meta Matrix

ε M − ε
ε ∆k

1

∆k̄
1

∆k
4

∆k̄
4

M − ε ∆k
2

∆k̄
2

∆k
3

∆k̄
3

∆uk(δ1, δ2) =


ε(b+ c− 2a) + (M − δ2)(d− a)

2M + 2ε− δ1 − δ2
|z > x

ε(c+ d− 2a) + (M − δ2)(b− a)

2M + 2ε− δ1 − δ2
|x > z

(7)

∆uk̄(δ1, δ2) =


ε(x+ y − 2w) + (M − δ2)(z − w)

2M + 2ε− δ1 − δ2
|z > x

ε(z + y − 2w) + (M − δ2)(x− w)

2M + 2ε− δ1 − δ2
|x > z

(8)

4.3.1 Game 1: NE solution exists and it is rational
for R to induce the cycle

ε (M − ε)
ε ( 1

2
,− 1

2
) (

2ε

M + 2ε
,− 2ε

M + 2ε
)

(M − ε) (
M

M + 2ε
,− M

M + 2ε
) ( 1

2
,− 1

2
)

Table 1: Unfilled meta matrix

Consider the game in Figure 5 and associated meta matrix
in Table 1. If 2ε = M , M

M+2ε
= 1

2
= 2ε

M+2ε
so all four states

are NE. But no matter which strategy profile we chose the
associated solution will be (ε, ε, ε, ε). M < 2ε is not feasible,
as ε is minimum time in each state and there are two states.
If M > 2ε using table 4.3.1 we find one NE at (M−ε,M−ε)
with corresponding solution (ε, ε, ε, ε). So upon inducing the
cycle, players select δ = M − ε coordinating to solution
S = (ε, ε, ε, ε) and converging to utility

uR(S) = (
1

4
)(2) + (

1

4
)(4) + (

1

4
)(1) + (

1

4
)(3) = 2.5

uC(S) = (
1

4
)(3) + (

1

4
)(1) + (

1

4
)(4) + (

1

4
)(2) = 2.5

Clearly cycling with S is beneficial for R and therefore
rational5. While detrimental for C, S minimizes the loss.

4.3.2 Game 2: NE Solutions exist but it is not ratio-
nal for R to induce the cycle

Consider the game in Figure 6 with associated meta ma-
trix shown in Table 3. If M > 4ε, cycling under (M −
5We also could have simply observed pure positive payoffs
in the meta matrix for R to find cycling rational.



M > 2ε M > 2ε
M + (M) > 2ε+ (M) M + (2ε) > 2ε+ (2ε)

2
M

M + 2ε
> 1 1 >

4ε

M + 2ε
M

M + 2ε
>

1

2

1

2
>

2ε

M + 2ε

− M

M + 2ε
< −1

2
−1

2
< − 2ε

M + 2ε

Table 2: Deduction for Example 1

3, 3 4, 3
2, 1 1, 4

Figure 6: Example 2 | R should not cycle

ε, ε, ε,M − ε) and (ε, ε, ε,M − ε) benefits R. We deduce ta-
ble 4.3.2 and find C has a pure strategy for sC = (ε, ε) and
the only NE is SNE = (M − ε, ε, ε, ε) which is detrimental
to both players. We test this with M=10 and ε = 1. Then
SNE = (M − ε, ε, ε, ε) = (9, 1, 1, 1), T = 12.

SNE = (M − ε, ε, ε, ε) = (9, 1, 1, 1)⇒ T = 12.

uR(SNE) = (
9

12
)(3) + (

1

12
)(2) + (

1

12
)(1) + (

1

12
)(4) ≈ 2.83

uC(SNE) = (
9

12
)(3) + (

1

12
)(1) + (

1

12
)(4) + (

1

12
)(2) ≈ 2.83

So while there are solutions that would benefit R, they do
not occur as C would always have the incentive to deviate,
so R should not chose to cycle.

4.3.3 Game 3: No NE but cycling is rational for R

Consider the game in Figure 7 with associated meta ma-
trix in Table 5. Using Tables 4.3.2 and 4.3.1, we find there
are no NE, so what behavior will emerge? Because there
is no stable solution, during the play of the game play-
ers will continually switch their strategies, cycling about
the solutions corresponding to the different squares in the
meta matrix. For example, say players start with solution
S = (M − ε,M − ε, ε, ε). In the next cycle R will deviate
to minimize the time it spends in (2,3), in response C will
deviate to minimize time in (3,1), then R will deviate to
maximizing time in (2,3), finally C will deviate to maximize
time in (3,1), bringing players back to S. Over time, these
values will normalize to
Sav = (M−ε+ε

2
, M−ε+ε

2
, ε, ε) = (M

2
, M

2
, ε, ε)6.

∆(uR) =
6M + 8ε

2M + 4ε
− 2 =

M

M + 2ε

∆(uC) =
5M + 10ε

2M + 4ε
− 3 =

−M
2M + 4ε

6Note that while cycling is detrimental for C, there are solu-
tions for where both players mutually benefit from cycling.
Consider M=15, ε = 0.5

2, 3 3, 1
4, 1 1, 4

Figure 7: Example 3 | R should cycle

ε (M − ε)
ε (M−4ε

2M
,− 1

2
) (

−2ε

M + 2ε
,− 2ε

M + 2ε
)

(M − ε) (
M − 4ε

M + 2ε
,−(

M

M + 2ε
)) (− 1

2
,− 1

2
)

Table 3: Unfilled meta matrix

M ≥ 2ε M ≥ 2ε
−2ε ≥ −M −2ε ≥ −M
−4ε ≥ −M − 2ε −M − 2ε ≥ −2M
2(−2ε) ≥ (−1)(M + 2ε) (−1)(M + 2ε) ≥ (2)(−M)
−2ε

M + 2ε
≥ −1

2

−1

2
≥ −M
M + 2ε

Table 4: Deduction for Example 2

Take the example where M=15, ε = 0.5

Sav = (7.5, 7.5, 0.5, 0.5)⇒ T = 16

uR(Sav) = (
7.5

16)
)(2) + (

7.5

16
)(4) + (

0.5

16
)(1) + (

0.5

16
)(3) ≈ 2.94

uC(Sav) = (
7.5

16
)(3) + (

7.5

16
)(2) + (

0.5

16
)(4) + (

0.5

16
)(1) = 2.5

5. CYCLIC GAMES WITH NO MAX TIME
RESTRAINTS

Previous analysis showed that while pk’s rational strategy
minimizes time spent in the least preferred state, it does
not always maximize the remaining time spent in its most
preferred decision state and there are games where the ra-
tional choice is to spend ε time in the most preferred state
as well. This indicates that as long as a minimum time limit
is specified, there is the possibility that it might be rational
to engage a cycle even when no maximum time limits are
defined. For this class of games a natural question arises:
do any of these games have NE solutions? We address this
question directly in with Theorem 3 and show the answer is
not only yes, but that the NE which exists is unique; but
before presenting the theorem build up the intuition behind
it beginning with the following lemma.

5.1 Existence of Unique NE
LEMMA Consider an n-cycle (S1, S2, ..., Sn) with m play-

ers. For some solution S = (t1, t2, ..., tn) and player pi with
utility function ui and decision state Sm:

1. vi(Sm) < ui(S) ⇒ pi should deviate from S by de-
creasing time in Sm

2. vi(Sm) > ui(S) ⇒ pi shouuld deviate from S by in-
creasing time in Sm

3. vi(Sm) = ui(S)⇒ pi has no incentive to alter time in
Sm

Proof. Part 1
Consider an n-cyclic subgame (s1, s2, ..., sn) with I = [ε,∞).
Let S = (t1, t2, ...., tn) be any arbitrary solution, with T =
(t1 + t2 + ....+ tn). If for some player pi with decision state
Sm, vi(Sm) > ui(S), then let S∗ = (t1, t2, ., tm + δ, ..., tn)
and observe the following sequence of equivalent statements:

vi(Sm) > ui(S)



ε (M − ε)
ε ( 2M−2ε

2M
,− 1

2
) (

2ε

M + 2ε
,− 2ε

M + 2ε
)

(M − ε) (
2M − 2ε

M + 2ε
,−(

M

M + 2ε
)) ( 1

2
,− 1

2
)

Table 5: Unfilled meta matrix

vi(Sm) >
t1
T v

i(S1) +
t2
T v

i(S2) + ...+
tn
T v

i(Sn)

T vi(Sm) > t1v
i(S1) + t2v

i(S2) + ...+ tnv
i(Sn)

δ(T vi(Sm)) > δ(t1v
i(S1) + t2v

i(S2) + ...+ tnv
i(Sn)) ∀ δ > 0

δ(T vi(Sm)) + (T t1vi(S1) + T t2vi(S2) + ... + T tnvi(Sn)) >
δ(t1v

i(S1)+t2v
i(S2)+...+tnv

i(Sn))+(T t1vi(S1)+T t2vi(S2)+
...+ T tnvi(Sn))

T (tm+δ)vi(Sm)+T t1vi(S1)+T t2vi(S2)+...+T tm−1v
i(Sm−1)+

T tm+1v
i(Sm+1) + ...+T tnvi(Sn)) > (T + δ)t1v

i(S1) + (T +
δ)t2v

i(S2) + ...+ (T + δ)tnv
i(Sn)

t1v
i(S1)

T + δ
+
t2v

i(S2)

T + δ
+...+

tm−1v
i(Sm−1)

T + δ
+

(tm + δ)vi(Sm)

T + δ
+

tm+1v
i(Sm+1)

T + δ
+ ...+

tnv
i(Sn)

T + δ
>
t1v

i(S1)

T +
t2v

i(S2)

T + ...+

tnv
i(Sn)

T
ui(S∗) > ui(S)

∴ It is rational for pi to deviates to S∗ by increasing time in
Sm as this increases its utility.

Part 2
Consider an n-cyclic subgame (S1, S2, ..., Sn) with I = [ε,∞).
Let S = (t1, t2, ...., tn) be any arbitrary solution, with T =
(t1 + t2 + ....+ tn). If for some player pi and decision state
Sm, vi(Sm) < ui(S), then let S∗ = (t1, t2, ...., tm − δ, ..., tn)
and observe the following sequence of equivalent statements:

vi(Sm) < ui(S)

vi(Sm) <
t1
T v

i(S1) +
t2
T v

i(S2) + ...+
tn
T v

i(Sn)

T vi(Sm) < t1v
i(S1) + t2v

i(S2) + ...+ tnv
i(Sn)

−δ(T vi(Sm)) > −δ(t1vi(S1) + t2v
i(S2) + ... + tnv

i(Sn)) ∀
δ > 0

−δ(T vi(Sm)) + (T t1vi(S1) +T t2vi(S2) + ...+T tnvi(Sn)) >
−δ(t1vi(S1)+t2v

i(S2)+...+tnv
i(Sn))+(T t1vi(S1)+T t2vi(S2)+

...+ T tnvi(Sn))

T (tm−δ)vi(Sm)+T t1vi(S1)+T t2vi(S2)+...+T tm−1v
i(Sm−1)+

T tm+1v
i(Sm+1) + ...+T tnvi(Sn)) > (T − δ)t1vi(S1) + (T −

δ)t2v
i(S2) + ...+ (T − δ)tnvi(Sn)

t1v
i(S1)

T − δ +
t2v

i(S2)

T − δ +...+
tm−1v

i(Sm−1)

T − δ +
(tm − δ)vi(Sm)

T − δ +

tm+1v
i(Sm+1)

T − δ + ...+
tnv

i(Sn)

T − δ >
t1v

i(S1)

T +
t2v

i(S2)

T + ...+

tnv
i(Sn)

T
ui(S∗) > ui(S) ∴ it is rational for pi to deviate to S∗ by
decreasing time in Sm

The proof for part 3 is trivial

The lemma shows that if a player’s valuation of decision
state Sm is greater than the utility it receives cycling with
S, it is rational to deviate from S by increasing time in Sm.
But this begets the question: is there a specific amount of
time it should deviate by so that this new solution is opti-
mal? Alternatively, can it overshoot its deviation and end
up wanting to backtrack and deduce time in Sm? The an-
swer can be found in the following corollary:

COROLLARY Consider an n-cycle (S1, S2, ..., Sn) with m
players. For some solution S = (t1, t2, ..., tn), some state
Sm and some player pi, if vi(Sm) > U i(S) ⇒ ∀ξ > 0,
S∗ = (t1, t2, ..., tm−1, ξ, tm+1, ..., tn) is not NE

Proof. Suppose for pi v
i(Sm) > U i(S) and pi increases

time in Sm by δ resulting in S∗ = (t1, t2, ..., tm + δ, ..., tn)
vi(Sm) > ui(S)

vi(Sm) >
t1
T v

i(S1) +
t2
T v

i(S2) + ...+
tn
T v

i(Sn)

T vi(Sm) > t1v
i(S1) + t2v

i(S2) + ...+ tnv
i(Sn)

T vi(Sm)+(δvi(Sm)) > t1v
i(S1)+ t2v

i(S2)+ ...+ tnv
i(Sn)+

(δvi(Sm))

vi(Sm) >

[
t1v

i(S1) + t2v
i(S2) + ...+ (tm + δ)vi(Sm) + ...+ tnv

i(Sn)
]

T + δ

vi(Sm) > ui(S∗)

Since the selection of δ was arbitrary, pi will always have the
incentive to unilaterally deviate from S∗ by increasing time
in Sm

7

What about the alternative, when a player wants to min-
imize the time it spends in a state? Players might wish to
deviate by decreasing the time in a state, but with a lower
bound ε the possibility for a NE solution exists: the one
where players spend ε in each decision state. So as long
as for each players and all the states sm it moves from, if
sm < up(ε, ε, ..., ε) then (ε, ε, ε...., ε) is NE because while the
players have an incentive to deviate, it is impossible to do so.
Furthermore, notice that by nature of the cycle, if this rela-
tionship holds for a player’s cyclic states, then it holds for
all its decision states. Our analysis can now be formalized
with the following theorem:

Theorem 3. Consider an n-cycle (S1, S2, ..., Sn) with m
players. Let Sε = (ε, ε, ..., ε). If ∀ players pi
vi(S0) ≤ U i(Sε)⇒ Sε is the unique NE.

In conclusion, if I = [ε,∞), player pk need only check if
each of its opponent’s valuation of the cyclic state is less
than their valuation about the average of the cycle. If it
is, then not only is the minimum solution Sε = (ε, ε, ..., ε) a
NE, but it is mutually beneficial for all players and pk should
cycle. If this test fails, then there is no NE for the game.

5.2 Example Game
Consider the game in Figure 8 with initial player R and

state (2,3) and I = [ε,∞). If we want to know if there is
a mutually beneficial NE solution for the game, we check if

7Analysis shows the same situation for decreasing the
amount it spends in a state, but is omitted due to space
constraints.



2, 3 4, 2
3, 2.5 1, 5

Figure 8: Example 4 | Mutually beneficial to cycle

each player values the average payoff over the cycle as op-
posed to their valuation for the cyclic state. For R: 2 <
2+3+1+4

4
= 2.25, and for C : 3 < 3+2.5+5+2

4
= 3.125, so The-

orem 2 is satisfied and we conclude Sε = (ε, ε, ε, ε) is NE.
Try ε = 0.5.

uR(Sε) =
0.5

2
2 +

0.5

2
3 +

0.5

2
1 +

0.5

2
4 = 2.5

uC(Sε) =
0.5

2
3 +

0.5

2
2.5 +

0.5

2
5 +

0.5

2
2 = 3.125

Test by first making R deviate by spending additional 0.2
time in its most preferred state then doing the same for C
Sε = (0.7, 0.5, 0.5, 0.5), T = 2.2ε

uR(Sε) =
0.7

2.2
2 +

0.5

2.2
3 +

0.5

2.2
1 +

0.5

2.2
4 = 2.45

uC(Sε) =
0.7

2.2
3 +

0.5

2.2
2.5 +

0.5

2.2
5 +

0.5

2.2
2 = 3.11

Sε = (0.5, 0.7, 0.5, 0.5), T = 2.2ε

uR(Sε) =
0.5

2.2
2 +

0.7

2.2
3 +

0.5

2.2
1 +

0.5

2.2
4 = 2.54

uC(Sε) =
0.5

2.2
3 +

0.7

2.2
2.5 +

0.5

2.2
5 +

0.5

2.2
2 = 3.06

Note in this case that R fares better if C deviates but C
does worse, so it has no incentive to do so.

6. CONCLUSIONS AND FUTURE WORK
TOM is a novel approach to analyzing and playing dy-

namic games. Unfortunately, it neglects the influence of time
on strategy selection restricting players to static, end game
payoff distribution. Because of this, cycling, while shown
to exist, is treated indistinguishably from games with pure
strategies for staying in non-cyclic initial states, failing to
supply players with a suitable rationality paradigm for op-
timizing their strategy in such situations. To determine if
cycling is preferable over non-movement, a player must ask
itself two questions: are there any solutions under which
cycling proves beneficial, and are any of these feasible when
considering infinite play?

We first revised the rationality rules of TOM to support
an analysis of games where utility varies as a function of
time and to incorporate time limitations on game play, and
used this to characterize both cyclic and non-cyclic games.
We then turned our attention to the analysis of indefinite
cycling. We found in such games, each player’s rational
strategy is to minimize the time it spends in its least pre-
ferred state but that the converse is not necessarily true.
For games with strict bounds on time, we found if equilibria
exist they exist only as solutions corresponding to strategies
on either of these bounds. We constructed a meta matrix for
each game and theorized that NE in the meta matrix corre-
spond to stable strategy sets that converge during indefinite
game play. We find that even in the absence of equilib-
ria solutions, where players constantly deviate to different
strategies, cycling can be rational. For games limited only
to minimum time limits, we found there are still scenarios
where cycling is rational: those in which each player’s val-
uation of the cyclic state is less than its average valuation

about the cycle.
Although our analysis focused exclusively on the class of

2× 2 games, we believe some of these results can be gener-
alized to arbitrary n player, m state games. The difficulty
arises from the fact that cycles of various lengths can occur,
and so there is no straight forward way to determine the
number of decision states each player makes, if any, in a cy-
cle, nor what order player arises in. We have developed the
geometric intuition behind these concepts, and are attempt-
ing to establish efficient means to characterize the solution
space and equilibria of a game as a result. Furthermore, we
plan to conduct simulations to obtain empirical results to
supplement the theoretical ones discussed here.
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