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ABSTRACT
We study agent societies where self-interested agents interact re-
peatedly over extended time periods. In particular, we are inter-
ested in environments where agents can form mutually beneficial
relationships by exchanging help but an agent would rather re-
ceive help than give it. Evolutionary tournaments with competing
help-giving strategies can model scenarios where agents periodi-
cally adopt strategies that are outperforming others in the popula-
tion. Such experiments, however, can be computationally costly
and hence it is difficult to prescribe a rational strategy choice given
environmental conditions like task mix, strategy distribution in the
population, etc. A preferred approach, pursued in this paper, is to
analytically capture the dynamics of the strategy mix in the popu-
lation under an evolutionary tournament. Such an analytical model
can be used to predict the evolutionarily dominant strategy, the ra-
tional strategy choice.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms
Experimentation,Performance

Keywords
Cooperation, reciprocity, agents, adaptation

1. INTRODUCTION
With the burgeoning of agent based electronic commerce, rec-

ommender systems, personal assistant agents, etc. it is becoming
increasingly clear that agent systems must interact with a variety of
information sources in an open, heterogeneous environment. One
of the key factors for successful agent based systems (ABSs) of
the future would be the capability to interact with other ABSs and
humans in different social and role contexts and over extended pe-
riods of time. Research in societal aspects of agent strategies has
been relatively scarce [9]. Whereas economic models can provide
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a basis for structuring agent interactions [14], other non-monetary
approaches [1, 2, 3, 4, 5, 8, 11] may provide effective solutions in
certain situations. We assume that typical real-world environments
abound in cooperation possibilities: situations where one agent can
help another agent by sharing work such that the helping cost of the
helper is less than the cost saving of the helped agent. Whereas pre-
vious work have identified agent strategies that allow agents to take
advantage of cooperation possibilities in their environments, there
is no existing formal framework to characterize the performance
of different competing strategies given environmental parameters.
We develop an analytical model to predict the dynamics of such
systems assuming agents adopt strategies based on their past per-
formance in the environment.

Sen et al. [10, 11] have presented strategies that promote co-
operation among homogeneous groups and can resist exploitation
by malevolent agents in heterogeneous groups. Such strategies can
lead to both improved local performance for individual agents and
effective global performance for the entire system. A restrictive
assumption in this line of work has been that agents have fixed
strategies. For example, they have assumed that agents with spec-
ified strategies interact repeatedly over a sustained period of time
and their effectiveness is calculated as a function of the total cost
incurred to complete all assigned tasks. The resultant performance
reflects cost incurred for local tasks, cost incurred to help other
agents with their tasks, and savings obtained from others when help
was received.

A more realistic scenario would be to give an agent the freedom
of choosing from one of several of these strategies and to change
its strategy as dictated by the environmental conditions. An agent
may be inclined to adopt a strategy if agents using that strategy
is observed to be performing better than others. Such a strategy
adoption method leads to an evolutionary process with a dynami-
cally changing group composition of agent strategies [12, 13]. In
this paper, we present a mathematical model of the dynamics of the
agent population. Our goal is to identify the dominant regions for
different strategies based on environmental conditions like initial
population composition, number of tasks agents need to accom-
plish, the strategy selection criteria, etc.

We consider a problem domain where each of the agents are as-
signed some tasks. The cost of executing a task can be reduced
or eliminated if help is obtained from another agent. An agent is
an expert of a task type if it requires less cost than others to ac-
complish tasks of that type. Hence, non-experts in a task type will
benefit by receiving help for tasks of that type from corresponding
experts. Experts in differing task types can form mutually benefi-
cial relationships by exchanging help. After all agents have finished
processing their assigned tasks, their performances are tallied. This
comprises one evaluation period, or generation, of the current agent
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strategies. The strategies adopted by the agents in the next evalu-
ation period is determined by a performance-proportionate scheme
where the probability with which an agent adopts a strategy in-
creases with the average performance of agents employing that
strategy in the most recent evaluation period. Thus, it is likely
that more agents are produced with strategies that generated above-
average performance. As a result, if a strategy produces better per-
formance in one evaluation period compared to other strategies, we
are likely to see more individuals adopting that strategy in the next
evaluation period. This generational scheme is semantically equiv-
alent to every agent periodically selecting its strategy based on the
current relative performance of the set of available strategies. This
generational approach is akin to work on identifying “evolutionary
stable strategy” [6].

The goal of this paper is to identify the dominant strategies un-
der different environmental conditions including initial population
composition, the frequencies of the tasks assigned to the agents and
the selection criterion used for population evolution. We present
a mathematical analysis of the dynamics of the agent population.
Using this model we can predict the strategy that will eventually
dominate the population given the initial configuration.

It is evident that if each agent was to perform only one task, i.e.,
the number of interactions between two agents were at most one,
agents who seek but do not provide help (selfish agents) will out-
perform those who offer and return help (reciprocative agents). On
the other hand, if the agent group were completely stable, i.e., the
agents had an infinite, or very large, number of tasks to perform
and hence interacted with each other infinitely often, the reciproca-
tive strategy will dominate the selfish strategy as after some time
only reciprocative agents will receive the benefit of help from each
other. The switch in dominance happens at an intermediate value
of the number of tasks per agent, and is dependent on other en-
vironmental factors like initial group composition. The proposed
mathematical analysis and predictive model is to identify the re-
gions where selfish or reciprocative agents are dominant. It is also
interesting to investigate if there are situations where mixed popu-
lations of reciprocative and selfish agents are sustained through the
evolutionary process. The significance of such a predictive model is
that given the initial population configuration and number of tasks,
an agent can predict the evolutionarily dominant strategy and hence
adopt the same.

2. ADAPTATION VIA RECIPROCITY
A significant body of work by mathematical biologists or econo-

mists on the evolution of altruistic strategy deals with the ideal-
ized problem called Prisoner’s dilemma [2] or some other repeti-
tive, symmetrical, and identical ‘games’. To consider a well-known
study in this area, Axelrod demonstrates that a simple, deterministic
reciprocal scheme or the tit-for-tat strategy is quite robust and ef-
ficient in maximizing local utility [2]. Sen argues that the assump-
tions underlying the simple reciprocative strategy, repeated play of
identical games, simultaneous moves, etc. are untenable in most
real-life situations [10]. Though Sen’s formulation has the right
motivations, it is limited by the constraint of not allowing agents to
change strategies based on experience.

The evaluation framework used by Axelrod considers an evolv-
ing population composition by allowing propagation of more suc-
cessful strategies and elimination of unsuccessful ones. In this pa-
per, we evaluate the variants of exploitative and reciprocative strate-
gies suggested by Sen [11] in a generational framework as used by
Axelrod [2] which can also be used to model agents adopting strate-
gies based on their past performance. This allows us to see what
strategies emerge to be dominant or are evolutionarily stable.
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Figure 1: Probability distribution for accepting request for co-
operation.

In our evolutionary framework we study two agent types with
fixed strategies: those who always help (philanthrops) and those
who never help (selfish). We also used Sen’s reciprocative agents,
described next, which use a probability function involving balance
of past exchanges to determine whether or not to help another age-
nt [10].

3. PROBABILISTIC RECIPROCITY
Each agent is assigned to carry out T tasks. The mth task as-

signed to the ith agent, tim, will cost it Cij if the mth task is of
type j. However, if agent k carried out this task together with its
own tasks, the cost incurred for task j by agent k is Ckl

j (no cost
is incurred by agent i), where agent k is doing tasks of type l. If
Cij > Ckl

j , there exists a cooperation possibility as agent k can
help agent i save Cij by incurring a cost of only Ckl

j .
Sik and Wik are respectively the cumulative savings obtained

from and extra cost incurred by agent i from agent k over all of
their previous exchanges. Also, Bik = Sik −Wik is the balance
of these exchanges (note that, in general, Bik 6= −Bki).

Sen [10] proposes a probabilistic decision mechanism that satis-
fies a set of criteria for choosing when to honor a request for help
that was described at the end of the previous section. The probabil-
ity that agent k will carry out task tij for agent i while it is carrying
out its task tkl is given by:

Pr(i, k, j, l) =
1

1 + exp
Ckl

j
−β∗Ck

avg
−B

ki

τ

, (1)

where Ck
avg is the average cost of tasks performed by agent k, and

β and τ are constants. This is a sigmoidal probability function
(not a probability distribution) where the probability of helping in-
creases as the balance increases and is more for less costly tasks. A
sample probability distribution is presented in Figure 1. β can be
set to a low value to move the probability curve left (less inclined
to cooperate) or to a high value to move the curve to the right (more
inclined to cooperate). Initially, Bki = 0 for all i and k. At this
point the probability that an agent will help another agent by incur-
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ring an extra cost of β ∗ Ck
avg is 0.5. τ can be used to control the

steepness of the curve. For a very steep curve approximating a step
function, an agent will almost always accept cooperation requests
with extra cost less than β∗Ck

avg, but will rarely accept cooperation
requests with an extra cost greater than that value. In this paper we
plan to include the following philanthropic, selfish and reciproca-
tive agent types [10]:
Philanthropic agents: Agents that always honor a cooperation re-
quest irrespective of past experience.
Selfish agents: Agents who ask for help but never return favors.
Selfish agents can thrive on the benevolence of philanthropic agents.
Reciprocative agents: Agents that use the probabilistic reciprocity
scheme described above.

We also study a variant of the reciprocative strategy [11]:
Earned-Trust based reciprocative agents: While evaluating a re-
quest for help, these agents consider balances of only those agents
with whom they themselves have favorable balances. In place of
using Bki in Equation 1, a conservatively trusting reciprocative
agent k uses

�
j 6=i∧Bkj>0

Bji while calculating the probability of
helping agent i. This behavior is required to counter false balance
reporting by exploitative agents.

4. AGENT POPULATION DYNAMICS MODEL
In this section, we present the mathematical analysis of the agent

population dynamics. Using this model, an agent can predict the
population configuration after each time period given its environ-
mental configuration and without doing any experimentation or ex-
ploration in the domain. We consider the proportion of selfish, s,
and proportion of philanthropic, p, agents as the independent vari-
ables. These two variables completely determine the initial strategy
distribution in the population, because the sum of the proportions
of the three different agent types must be one. Given initial strategy
distribution in the population and number of tasks in the domain,
T , we want to we want to calculate the evolutionarily stable and
dominant strategy.

Let there be N agents in the environment. In the initial pop-
ulation, 〈ps, pp, pr〉 is the proportion of the selfish, philanthropic
and reciprocative agents. From the discussion at the end of Sec-
tion 1, the reciprocative strategies are likely to be dominant for
highly stable environments (large T ) and selfish strategies are ex-
pected to be dominant in very dynamic groups (small T ). Our
goal then is to identify a decision surface that separates the re-
gions of dominance of selfish and reciprocative strategies in the
three-dimensional space defined by ps, pp, and T . The surface will
have the property that the reciprocative strategy will be evolution-
ary dominant for any configuration corresponding to a point lying
above this surface, i.e., for a higher value of T .

In this paper, we have considered two types of tasks: type1 and
type2. The proportion of task types 〈tp1, tp2〉 is assumed to be
equal, i.e. tp1 = tp2 = 0.5. Given the proportion of the ini-
tial population, one can find out the number of different types of
agents. Nr,l, Np,l and Ns,l are the number of reciprocative, phil-
anthropic and selfish agents respectively, which are expert in task
type l = 1, 2, where Nr,l = N ∗ pr ∗ tpl, Np,l = N ∗ pp ∗ tpl

and Ns,l = N ∗ ps ∗ tpl. To predict if there exists any evolutionary
dominant strategy, we have to predict the expected population con-
figuration and their performances in each period given this initial
configuration of the agent population and the total number of tasks
per agent.

P (i, k, j, l) is the probability that agent k, if it is asked, will help
agent i for a particular task t of type j when agent k is expert in

tasks type l. This P (i, k, j, l) is defined as,

P (i, k, j, l) =
1

1 + exp
Ckl

j
−β∗Ck

avg
−B

ki

τ

, if k is reci &d j = l

= 1, if k is philanthropic & j = l

= 0, otherwise.

Bki is defined as Bki = Ski − Wki for all i, k, where Ski and
Wki are cumulative savings from and extra cost incurred by agent
k from agent i. Initially, Ski = Wki = 0 and hence Bki = 0.

We calculate P1(i, k, j, l), the probability that for a task of type
j in the task distribution of agent i, agent k, an expert in task type
l, will be the one to help agent i. This event corresponds to the
situation that all the agents asked before agent k will refuse to help
and agent k will help.

P1(i, k, j, l)=

Nr,l�
a=1,6=i

[Pr(Lk,a ∩R(i, a, j, l)) ∗ P (i, k, j, l)],

if k is reciprocative

=

Nr,l�
a=1,6=i

[Pr(Lp

k,a ∩R
p(i, a, j, l))],

if k is philanthropic

= 0, if k is selfish (2)

where Lk,a is the event that k is selected as the ath among the Nr,l

reciprocative agents that are expert in tasks of type l, i.e., after a−1
reciprocative agents expert in task type l. R(i, a, j, l) is the event
that all those a− 1 agents refuse to help agent i for tasks of type j.
So,

Pr(Lk,a∩R(i, a, j, l)) = Pr(Lk,a)∗Pr(R(i, a, j, l)|Lk,a), (3)

where

Pr(Lk,a) =

�
Nr,l − 1
a− 1 ��

Nr,l + Np,l

a � (4)

and as agent decisions are independent,

Pr(R(i, a, j, l)|Lk,a) =

a−1�
t=1

(1− P (i, at, j, l)), (5)

where at is the tth agent selected for seeking help. Since all agents
are starting with the same probabilities to help another agent, it is
immaterial in which order or who exactly are the agents that are
selected before agent j is selected.

The probabilities Pr(Lp

k,a) are similar to the probability Pr(Lk,a)
except that the numerator in the expression for the former contains
Nr,l instead of Nr,l − 1 (this is because for a philanthrop, all the
reciprocatives may have already been asked). Also, the probability
Pr(Rp(i, a, j, l)|Lp

k,a) is similar to the probability Pr(R(i, a, j, l)|

Lk,a) except that the expression for the former uses a instead of
a− 1 range of the product (for similar reasons as above).

Let us now consider the expected change of balance between two
reciprocative agents i and k for a particular task of type l. One can
compute the expected savings and expected spending of agent i for
agent k by

Sik = Sik +
2�

l=1

P1(i, l, k, l) ∗ Ci,l ∗ ptl,
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Wik = Wik +
2�

l=1

P1(k, l, i, l) ∗ Ci,l ∗ ptl

and Bik = Sik −Wik. Using these Bik values we can again find
out the probability of helping for the next task. So, we can calcu-
late the performance of an agent as the expected net wealth it will
generate after processing all the assigned tasks. The expected net
wealth generated by an agent is the total of the expected balance
with the other agents.

At the end of each evaluation period, i.e., after every agent com-
pletes all the tasks they are assigned and those that it too on to help
other agents, the performances are tallied. At this point, new agent
strategy assignments are made as follows: for each agent i, two
agents are selected randomly from the population without replace-
ment. Then, of these two selected agents, the strategy of the one
with higher performance is adopted by agent i1.

This will determine our new expected population with 〈ps, pp, pr〉
as the proportion tuple. This proportion will be approximated as
the probability of an agent choosing the corresponding strategies.
We now calculate the expected probability that an agent will adopt
reciprocative strategy i.e. pr. It is defined as,

pr = Pr(reci, reci) + Pr(reci, self) ∗ Pr(reci ≥ self)

+Pr(reci, philan) ∗ P (reci ≥ philan),

where

Pr(reci, reci) =

�
bN ∗ prc

2 ��
N

2 � ,

P r(reci, oth) =

�
bN ∗ prc

1 � ∗ �
bN ∗ pothc

1 ��
N

2 �
where, oth = selfish or philanthropic. Then the expected value of
Pr(reci ≥ oth) can be found from the previously calculated ex-
pected performance. Similarly, we can find out pp and ps values
and determine the expected new strategy distribution in the pop-
ulation in the next generation. We repeat this process until the
agent population becomes homogeneous, i.e., all agents use the
same strategy. There may exist situations where one single strategy
may not be evolutionary dominant. In such situations, we repeat
this process up to a finite horizon.

So, for a particular initial agent population and number of tasks
available to each agent one can find out the dynamics of expected
population configuration and the performances of different agents.
One can identify if there exists any evolutionarily dominant strat-
egy. Therefore an agent can choose a utility-maximizing strategy if
it was cognizant of the environmental factors like number of tasks
per agent, how many evolution periods it wants to stay and the start-
ing strategy distribution in the population.

5. ANALYSIS OF THE POPULATION DY-
NAMICS

The decision surface that separate the preferred strategies in the
space defined by initial proportions of selfish and philanthrop agents
are shaped by the following propositions
1Selection of the best from a set of randomly selected candidates
is known as tournament selection in the genetic algorithms litera-
ture [7].

Proposition 1: If philanthropic agents are present in the popu-
lation, then the probability that an agent (selfish or reciprocative)
will receive help from at least one of the agents in the population is
1.

Proposition 2: If both philanthropic and selfish agents are present
in the population, the philanthropic agents cannot dominate the
selfish agents.

Proposition 3: In the presence of philanthropic agents, recip-
rocative agents cannot dominate the selfish agents.

Since the philanthropic agents help others without considering
their help-giving behavior, others benefit at their expense and it
is impossible for them to dominate the other strategies, as stated
in Proposition 2. Moreover, their presence help the exploitative
agents dominate the environment. Since, the selfish agents always
exploit the philanthropic agents without helping back, in their pres-
ence the performance of the philanthropic agents rapidly deterio-
rate and hence agents using that strategy switches to other strate-
gies. Also, as stated in Proposition 3, in the presence of philan-
thropic agents, a reciprocative agent cannot perform better than the
selfish agents. Only after the philanthropic strategy become extinct,
does the reciprocatives have any chance of dominating the selfish
agents. The remaining critical consideration is the help-exchange
that takes place in a group consisting only of selfish and reciproca-
tive agents. Within each evaluation period, the reciprocatives ini-
tially help the selfish agents and expects help from them. It takes
some time for them to recognize the selfish agents and stop help-
ing them. Once the reciprocative agents stop helping the selfish
agents, the selfish needs to do all of the work by themselves and
incur more cost compared to the reciprocatives who continue to ex-
change help among themselves. But, if the number of tasks within
an evaluation period is small, the reciprocatives will not be able to
compensate the initial cost incurred for helping the selfish agents.

To demonstrate the expected evolution of the population over a
single evolutionary run, we plot the proportion of the strategies,
calculated by our analytical model, over different evaluation pe-
riods in Figure 2. The environmental parameters are as follows:
N = 200, β = 4.0, τ = 0.9, pp = 0.3, ps = pr = 0.35. In the
figure, we present three different plots corresponding to task num-
bers from ranges which leads to three distinct evolutionary patterns.

In the left plot of Figure 2, T has a high value of 200. After
two evaluation periods, the floor value of the expected number of
philanthrops drop to zero. In the presence of philanthrop agents,
the expected performance of the selfish agents was better than that
of reciprocative agents. But after the philanthrops die off, the pri-
mary source of help for selfish has been driven to extinction. At
this point, the reciprocatives are expected to outperform the selfish
agents and increasingly more agents are expected to adopt recip-
rocative strategy. After about six evaluation periods the expected
number of selfish agents drop down to zero leaving reciprocatives
as the absolutely dominant strategy.

In the middle plot of Figure 2, T has a very low value of 5 which
will not allow the reciprocatives to compensate for the initial cost it
incurred by helping the selfish agents before they were recognized
as such. So, the selfish agents will outperform the reciprocative
agents and become the dominant strategy when tasks in the domain
is very low. From the figure we see that in contrast to the previous
case, the percentage of selfish agents in the population monoton-
ically grows in the population even after the philantrhops die off.
After only a few periods, the reciprocatives also become extinct,
leaving the selfish as the absolutely dominant strategy.

In the right plot of Figure 2, an intermediate value of T = 50
is used. In a very interesting development, we find that neither
the selfish and reciprocatives becomes evolutionary dominant strat-
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Figure 2: Expected number of agents of different types over evaluation periods. ps = pr = 0.35, pp = 0.3, N = 200, T = 200 (left),
5 (middle) and 50 (right) respectively.

egy in this environment. Rather we have a periodically oscillat-
ing mixed population. The oscillation takes place because, with
a small enough number of selfish, the number of reciprocatives is
large enough for a selfish agent to distribute its exploitation among
the large number of reciprocatives. Thus a given reciprocative does
not get have enough interactions with the selfish to unmistakably
identify them. This allows selfish agents to outperform the recip-
rocatives and hence increase their proportion in the next generation.
Now, however, there is not enough reciprocatives for each selfish
agent to benefit from. As a result, they cannot match the perfor-
mance of reciprocatives and hence their proportion decreases in the
next evolutionary period. This oscillation continues after the short
initial period when the philanthrops die off and the reciprocatives
grow to become the majority in the population. The oscillation in
the population, described above, continues indefinitely and no one
strategy is evolutionarily stable for such intermediate values of T .

ps and pp are the independent variables in Figure 3, with values
varying from 0.1 to 0.8 in steps of 0.1. For each initial population
distribution, we find the minimum number of tasks required for
the reciprocative agents to become evolutionary dominant. For any
point above the resulting decision surface, i.e., for a higher T for
the same initial population distribution, the reciprocative strategy is
the evolutionarily dominant strategy. The maximally dark, flat, re-
gion corresponds to invalid populations, e.g. the point 〈0.8, 0.5, ∗〉
does not exist as the agent proportions must sum to ≤ 1.

From Propositions 2 and 3, we see that the selfish agents will
benefit in the presence of philanthropic agents and grow in propor-
tion over generations as long as the philanthrops do not become
extinct. The evolutionarily dominant strategy is thereafter deter-
mined by the distribution of selfish and reciprocative agents when
the philanthropic agents become extinct. To better understand the
population dynamics after the philanthrops are eliminated, we an-
alyze performance of agents when only reciprocative and selfish
agents are present in different proportions in the population. We
present in Figure 4, for three T values, the expected average payoff
received by these strategies, calculated from our analytical model,
for different percentage of selfish agents with no philanthrop agents
in the environment. Note that the range of ps values for which the
selfish agents have better performance than the reciprocatives in-
creases as T decreases.

It is interesting to note that for small and intermediate values of
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Figure 3: For a given initial population distribution, and for
number of tasks equal or more than the decision surface, recip-
rocative strategy will be evolutionarily dominant.

T , the payoff curves for reciprocative and selfish agents intersect.
Such points of intersection correspond to population configurations
with mixed strategy equilibrium. Since the average performance of
the two different types are same, their numbers will not change
in the subsequent periods. Such equilibria are then fundamentally
different from the population oscillations we have observed in Fig-
ure 2.

We now use these plots to provide further explanation of results
presented in Figure 2. From the left plot of Figure 2 (T = 200),
we see that ps ≈ 0.8 when philanthrops die off. But from the right
plot of Figure 4, i.e., for T = 200, we see that the reciprocatives
dominate the selfish for ps ≈ 0.8, and hence the selfish proportion
will decrease over generations until reciprocatives become evolu-
tionarily dominant. From the middle plot of Figure 2 (T = 5),
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Figure 4: Expected payoff of selfish and reciprocative agents. T = 5 (left), 50 (middle) and 200 (right).
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Figure 5: T value for which expected performance of recip-
rocatives and selfish are equal.

we see that ps ≈ 0.95 when philanthrops die off. From the left
plot of Figure 4, i.e., for T = 5, we see that the selfish performs
better than the reciprocatives at ps = 0.95, and hence the selfish
proportion improve to become evolutionarily dominant. Note that
a slightly lower selfish percentage at the extinction of philanthrops
might lead to oscillatory population distributions.

From the right plot of Figure 2 (T = 50), we see that when phi-
lanthrops die off, ps is just more than 0.8. From the middle plot of
Figure 4, i.e., for T = 50, we see that the reciprocative outperform
the selfish and will therefore increase in proportion. What follows
is more interesting: with falling selfish percentage, their perfor-
mance improves. In the oscillatory phase of this plot, the selfish
proportion varies between approximately 0.1 and 0.3 in successive
generations. The corresponding points lie on different sides of the
equilibrium point of equal payoff for the two strategies in the mid-
dle plot of Figure 4. Compared to the reciprocatives, the selfish

payoff is lower when ps = 0.3 and higher when ps = 0.1. This
explains the oscillating population under a fitness proportionate se-
lection scheme.

To gain a further perspective on the relative dominance of the
two strategies, we plot, in Figure 5, the number of tasks where
selfish and reciprocative agents are expected to have identical per-
formance. The plot corresponds to an exponentially decaying func-
tion. We see that a small number of selfish agents can exploit the
reciprocatives for an extended period of time. As each reciproac-
tive agent individually needs several interactions to recognize self-
ish behavior, a selfish agent can, in the presence of many recip-
rocatives, get helped with a large number of tasks. Additionally,
oscillatory mixed strategies with small number of selfish agents is
possible even for relatively large T values.

This problem of residual selfish agents, or free riders, is ad-
dressed by the earned trust based (ETB) reciprocity model. This
is a reputation based model where an agent, deciding on whether
or not to provide help to another agent, considers the feedback of
other agents with whom it has had good balance of help exchange.
In Figure 6, we present plots similar to Figure 4 except here ETB
reciprocative agents are used. We see that the ETB agents almost
always outperform the selfish agents except when the number of
selfish is very high and T is very small. As ETB reciprocative
agents share experiences, they can recognize the selfish even when
it has little interaction with a selfish. The only exception where
selfish wins out is when their proportion is very high, and the cor-
responding extensive exploitation by many selfish agents in the first
few tasks, before ETB can recognize them, cannot be compensated
by ETB as there are only a few tasks to be performed. But with
T values of only as little as 15, the ETB reciprocatives start com-
pletely outperforming the selfish agents. We also do not observe
any oscillatory strategy with small number of residual selfish agents
in the population with ETB agents at these T values.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented an analytical model for pre-

dicting the mix of different strategy distributions under an evolu-
tionary scheme. Related population evolution models have been
extensively studied in population biology literature with stylized,
simple interactions with little or no history or memory. We are not
aware of studies like the one presented here, which tries to predict
evolution of strategy distributions of rational agents with complex
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Figure 6: Expected payoff of selfish and ETB reciprocative agents. T = 5 (left) and 15 (right).

decision functions and interaction histories. We believe that such
models will greatly enhance our capacity of designing, evaluating,
implementing, and understanding future agent societies.

Such an evolutionary scenario captures the dynamic of agents pe-
riodically adopting strategies that have been providing higher pay-
off in the current environment. Our goal has been to identify the
evolutionarily dominant strategy given the starting strategy distri-
bution and the number of tasks to be performed per iteration before
agents reconsider changing their strategies. Our analytical model
helps us predict both the population dynamics after any given num-
ber of strategy adoption decisions and the evolutionarily dominant
strategy given the environmental conditions. More importantly,
such predictive analysis allows us to construct a decision surface
using which a rational agent can choose the most beneficial strategy
for the long run given the initial strategy profile in the population
and the assigned task load.

The current analytical model to predict evolution of strategy mixes
can be augmented in multiple ways. The current model captures
synchronous strategy adoption decisions by the entire population
made at discrete time intervals. One extension can be to main-
tain the synchronous strategy adoption but by only a fraction of the
population. A more radical change will be to allow asynchronous
strategy adoption decisions by the population members. Alterna-
tive strategy adoption schemes, for example physical neighborhood
based sampling schemes that do not require global performance
data, can also be studied.
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APPENDIX
Proof of Proposition 1: In this environment an agent asks every

other agent sequentially for help until it receives help. If a
philanthropic agent is present in the environment, agents will
eventually ask it for help if turned down by other agents. If
asked, a philanthropic will always help. So, if a philanthropic
agent is present in the environment, other agents either receive
help before asking it or they will ask and receive help from it.
Hence the probability of receiving help is 1.

Alternatively, using Equation 3, 4 and 5, we can show that,�
k∈(P∪R)

P1(i, k, j, l) = 1, provided |P| ≥1, where P
and R, respectively, are the set of philanthropic agents and
reciprocative agents.

Proof of Proposition 2: In Proposition 1 we have shown that in
the presence of philanthropic agents all agents are guaranteed
to receive help for each of their tasks. Since, the selfish agents
never help any other agent, it will not incur any cost for help-
ing others. The philanthropic agents, on the other hand, may
incur the cost of helping other agents including the selfish
agents. Hence, in a mixed group philanthropic agents cannot
outperform, and hence dominate, selfish agents.

Proof of Proposition 3: As shown in Proposition 1, in the pres-
ence of philanthropic agents all the agents will receive help.
Since, the selfish agents never help any other agent, they will
not incur any cost for helping others. The reciprocative agents,
however, will incur some cost of helping as they will help the
philanthropic agents and other reciprocative agents with posi-
tive probability. Initially, i.e., before identifying them as self-
ish, the reciprocative agents will also help the selfish agents
with positive probability. Hence, in a mixed group containing
philanthropic, selfish and reciprocative agents, the reciproca-
tive agents cannot outperform, and hence dominate, selfish
agents.
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