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ABSTRACTMulti-agent learning literature has looked at iterated two-player games to develop mehanisms that allow agents tolearn to onverge on Nash Equilibrium strategy pro�les.Suh equilibrium on�guration implies that there is no mo-tivation for one player to hange its strategy if the otherdoes not. Often, in general sum games, a higher payo� anbe obtained by both players if one hooses not to respondoptimally to the other player. By developing mutual trust,agents an avoid iterated best responses that will lead to alesser payo� Nash Equilibrium. In this paper we onsider1-level agents (modelers) who selet ations based on ex-peted utility onsidering probability distributions over theations of the opponent(s). We show that in ertain situa-tions, suh stohastially-greedy agents an perform better(by developing mutually trusting behavior) than those thatexpliitly attempt to onverge to Nash Equilibrium. Wealso experiment with an interesting ation revelation strat-egy that an give the revealer better payo� on onvergenethan a non-revealing approah. By revealing, the revealeran onvine or enourage other agent to agree to a moretrusted equilibrium.
1. INTRODUCTIONReinforement learning tehniques with performane andonvergene guarantees have been developed for isolated sin-gle agents. The underlying assumption is that the envi-ronment is stationary. Multi-agent or onurrent learning,however, violates this assumption. As a result, the standardreinforement learning tehniques (like Q-learning) are notguaranteed to onverge in a multi-agent environment. Thedesired onvergene in multi-agent systems is on an equilib-rium strategy-pro�le (olletion of strategies of the agents)rather than optimal strategies for an individual agent.The stohasti-game (or Markov Games) framework, ageneralization of Markov Deision Proesses for multipleplayers, has been used to model learning by agents in vari-ous domains [2, 3, 4℄. In [2℄, two basi types of multi-agent
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learners have been studied. The learners who do not modelother agents, e�etively onsidering them as passive parts ofa non-stationary environment, are alled `independent learn-ers' (ILs). We term these 0-level agents. In ontrast tosuh agents, those that observe others' ations and rewardsand use these expliitly in modeling them, are alled `joint-ation learners' (JALs). We all these 1-level agents. Theo-rem 1 in [2℄ laims that both 0 and 1-level agents onvergeto equilibria in purely ooperative domains or oordinationgames. But their work is not extendible to general domainsor general-sum games. The authors in [3℄ have adopted aomplete-information general-sum game approah and pro-vide a learning sheme that allows learners to onverge to amixed-strategy Nash Equilibrium in the limit.Nash Equilibrium, however, does not guarantee that agentswill obtain the best possible payo�s, i.e., Nash Equilibriumdoes not ensure Pareto-optimal solutions. Some non-NashEquilibrium ation ombinations may yield better payo�sfor both agents, whih may be reahed if the agents lookahead while seleting ations [1℄. Suh desirable non-myopihoies are preferred by both agents. While playing best re-sponse to other agents' urrent poliy will lead to a deviationfrom suh desirable solutions, restraint or mutual trust anenable players to stik to suh ation ombinations.In this paper we evaluate the possibility of onurrentlearners onverging to suh desirable non-myopi ation hoies.While Hu and Wellman's approah is guaranteed to on-verge to Nash Equilibrium strategy pro�les [3℄ under ertainonditions, independent, or even ordinary 1-level Q-learnershave no suh guarantees. In our previous work, we haveobserved that 0-level Q-learners often outperformed higher-level Q-learners in the long run even though their learningrate is slower [7℄. In this paper we show that greedy modelersan, in their turn, outperform equilibrium seeking modelersin terms of the rewards reeived. We also investigate an in-teresting variation of sequential play with ation revelation.The motivation behind this work is to determine whetheragents an learn to make desirable non-myopi hoies by re-vealing the ations they take to the other agents. By ationrevelation, we mean that an agent (say A) takes a partiu-lar ation and ommuniates its ation to the other agent(s).The other agent(s) take their ation with full knowledge ofagent A's ation. We, in the urrent work, assume thatagents are truthful about their ation revelation. We de-sign a strategy where eah agent is given an opportunity toreveal its ation at every alternate iteration (a game on-sists of multiple iterations) of the game whih we refer to asAlternate revelation hoie. Whether the agent hooses to



reveal its ation depends on its previous experiene (the pay-o� it reeived) when it hose to reveal/not reveal its ation.Another strategy that we designed and experimented withis the Simultaneous revelation hoie where both agents aregiven an opportunity to reveal their ations at every itera-tion of the game. As in the Alternate revelation hoie, anagent's hoie of ation revelation is based on its previousexperiene (the payo�s reeived) when it hose to reveal/notreveal its ation. We will explain both the strategies in detaillater. We present some interesting results in setion 4 whihseem to indiate that, under ertain game matrix on�gu-rations (game matries are disussed in setion 2), agentslearn to onverge to a more desirable Pareto-optimal solu-tion when they learn to reveal their ations. On the ontrary,they onverge to a myopi Nash equilibrium when they donot adopt the revelation strategies disussed above. How-ever, we still need to formalize our approah and investigatethe problem in greater depth before we an determine thematrix on�gurations under whih suh results will be ob-tained. The problem is exaerbated given that the strategiesare not guaranteed to onverge in a multi-agent environ-ment.
2. LEARNING IN REPEATED GAMESIn this setion, we introdue some de�nitions to formulatea framework for onurrent learning.Definition 1. A Markov Deision Proess (MDP) is aquadruple fS;A; T; Rg, where S is the set of states, A is theset of ations, T is the transition funtion, T : S � A !PD(S), PD being a probability distribution, and R is thereward funtion, R : S �A!R.Amulti-agent reinforement-learning task an be looked uponas an extended MDP, with S speifying the joint-state of theagents, A being the joint-ations of the agents, (A1 �A2 �: : : An where Ai is the set of ations available to the ithagent), T as the joint state-transition funtion, and the re-ward funtion is rede�ned as R : S�A!Rn. The funtionsT and R are usually unknown, neessitating learning. Thegoal of the ith agent is to �nd a strategy �i that maximizesits expeted sum of disounted rewards,v(s; �i) = 1Xt=0 tE(ritj�i; ��i; s0 = s)where s0 is the initial joint-state, rit is the reward of the ithagent at time t,  2 [0; 1) is the disount fator, and ��iis the strategy-pro�le of i's opponents. In [3℄ the ith agentlearns ��i simultaneously, and opts for the best response toit. Though myopially this is the best an agent an do, itmay miss opportunities for reeiving higher payo�s as in thewell-known Prisoner's Dilemma problem.Definition 2. A bimatrix game is given by a pair of ma-tries, (M1;M2), (eah of size jA1j � jA2j) for a two-agentgame, where the payo� of the ith agent for the joint a-tion (a1; a2) is given by the entry Mi(a1; a2); 8(a1; a2) 2A1 �A2; i = 1; 2.Eah stage of an extended-MDP for two agents (it an beextended to n agents using n-dimensional tables instead ofmatries), an be looked upon as a bimatrix game. In thispaper we onsider general-sum games where the individual

payo�s of the agents for any joint-ation are unorrelated.We now de�ne Nash equilibrium for suh games.Definition 3. A pure-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of ations (a�1; a�2) suhthat M1(a�1; a�2) �M1(a1; a�2) 8a1 2 A1M2(a�1; a�2) �M2(a�1; a2) 8a2 2 A2In a Nash equilibrium the ation hosen by eah player isthe best response to the opponent's urrent strategy and noplayer in this game has any inentive for unilateral deviationfrom its urrent strategy. A general-sum bimatrix game maynot have any pure-strategy Nash Equilibrium.Definition 4. A mixed-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of probability vetors (��1 ; ��2 )suh that ��1 0M1��2 � �10M1��2 8�1 2 PD(A1)��1 0M2��2 � ��1 0M2�2 8�2 2 PD(A2)where PD(Ai) is the set of probability-distributions over theation spae of the ith agent.A signi�ant property of mixed-strategy Nash Equilibria, isthat there always exists at least one suh equilibrium pro�lefor an arbitrary �nite bimatrix game [8℄. Given suh a bima-trix game (M1;M2), the mixed-strategy Nash Equilibrium,(��1 ; ��2), an be omputed using a quadrati programmingapproah as outlined in [6℄.We are interested in a non-myopi equilibrium where aplayer not only onsiders its best response to urrent play-ing trends, but also future possible retaliation by the otherplayer. For example, onsider the two players playing �A1and �B1 respetively and the �rst player getting �A1 MA�B1as a result. While onsidering another strategy �A2 , A nowonsiders not only if �A2 MA�B1 > �A1 MA�B1 , but also if�A2 MA�B1 > �A2 MA�B2 , where �B2 is Bs best response to �A2(this equilibrium onept is similar in motivation to the non-myopi equilibrium in the Theory of Moves approah [1℄).Of ourse, it is diÆult to estimate the other player's bestresponse, but this an be approximated based on past playof the opponent.
3. Q-LEARNINGA general, single-agent reinforement learning task is anMDP, where the state transition and reward funtions T andR are unknown. A simple, model-free and on-line tehniquefor reinforement learning is Q-learning [11℄. In a statelessdomain, as is the ase with single-stage games studied inthis paper, an independent Q-learner will have Q-values foreah ation a, Q(a), and update them based on rewards rreeived from taking ation a as follows:Q(a) Q(a) + �(r �Q(a))where � is the learning-rate. This iteration has been provedto onverge to optimal Q-values, for a partiular strutureof �, but independent of any partiular exploration strat-egy provided it satis�es some general requirements. Whena number of independent learners apply this algorithm, the



onvergene-guarantee does not hold due to the non-stationarityof the environment. However, suh straightforward appli-ations of Q-learning in multi-agent systems have ahievedsuess in the past [2, 9, 10, 12℄. Our 1-level Q-learners learnQ-values, Q(a; b), for eah possible joint-ation (a; b), usingits observation of the ations of the other agents, but solelyits own reward for joint-ation. Thus the updation-rule usedis Q(a; b) Q(a; b) + �(r �Q(a; b))To allow these 1-level Q-learning agents to inreasinglyexploit their learned strategies, we use the Boltzmann ex-ploration strategy, whih slowly inreases the exploitationprobability. In this exploration sheme, the ation a is se-leted with probability eE(Q(a))=TPa0 eE(Q(a0))=T ;where E(a) =Pb pbQ(a; b), pb being omputed as the relative-frequeny measure from B's ation history. Thus we allthese agents \expeted utility based probabilisti learners"or (EUPs). The temperature parameter T is started at ahigh value (ausing more exploration) and then dereasedover time, e.g., by multiplying with a deay fator, to in-rease the exploitation probability.We have also experimented with an interesting variation ofsequential play with ation revelation. We allow one playerto reveal or announe its move at eah iteration of the game.The other player an hoose its move based on ompleteknowledge of the move made by its opponent. It might stilldeide to explore its ations instead of playing best responsein order to thoroughly evaluate its options. ations. In therevealing version of the game, the players keep not only anestimate of pb, the frequeny distribution of its opponent'smoves, but also the orresponding onditional frequeny dis-tribution, pbja, i.e., the likelihood that the opponent is goingto play its move b if the revealer plays b. Let us onsider thateah agent has a set of n ations to hoose from. The EUPshave to keep an estimate of eah of the n ations. However,in the revealing senario, eah agent an reveal any of itsn ations or may hoose not to reveal its ation. So, foreah agent, we have to keep an estimate of 2n ations (anestimate of an ation when it reveals it and an estimate ofthe same ation when it does not reveal it). In the followingdisussion, ar refers to a revealed ation and anr refers to anon-revealed ation. The Q matrix has entries for all ationpairs Q(i; j) where i 2 [1; n℄ and j 2 [1; n℄. Also, ar and anran take values between 1 and n (inluding 1 and n). For-mally, in the exploration sheme, any ation a belonging tothe set of non-revealed ations is seleted with probabilityeE(Q(a))=TPanr eE(Q(anr))=T +Par eE0(Q(ar))=T ;where E(anr) =Pb pbQ(anr; b) andE0(ar) =Pb pbjarQ(ar; b)and any ation a0 belonging to the set of revealed ations isseleted with probabilityeE0(Q(a0))=TPanr eE(Q(anr))=T +Par eE0(Q(ar))=T :Note that a and a0 an take any value between 1 and n(inluding 1 and n).We explored two variations of the revelation strategy.

� Alternate revelation hoie: In this strategy, eahagent is given an opportunity to reveal its ation atevery alternate iteration of the game (Any game has1000 iterations in all our experiments).� Simultaneous revelation hoie: In this strategy,both the agents are given an opportunity to revealtheir ations at every iteration of the game. If bothplayers agree on revealing, we randomly (with equalprobability) hoose between the two players. Other-wise, the player who learns to reveal is allowed to doso, and the other player hooses its ation based onomplete knowledge of the move made by its oppo-nent. The primary di�erene between the two strate-gies is that Simultaneous revelation hoie determinesthe revealer at every iteration of the game whereas Al-ternate revelation hoie has a predetermined revealerand determines whether this agent wants to reveal itsation or not. The advantage of Simultaneous revela-tion hoie over Alternate revelation hoie is as fol-lows: Supposing one agent (A) learns to reveal its a-tion, whereas the other (B) does not. Also, when Areveals its ation, payo� for both A and B is higherthan when B does not reveal its ation (otherwise Awill have no inentive to reveal its ation). Given this,in Alternate revelation hoie, approximately 50% ofthe time, B will be given the opportunity to reveal itsation (given that B has learnt not to reveal, it willnot use the opportunity) whereas in Simultaneous rev-elation hoie, A will always get the opportunity toreveal its ation (sine B will refrain from revealing)and thus, the average payo� for both agents will behigher in Simultaneous revelation hoie.
4. EXPERIMENTSOur experimental work uses four game matries (�gure 1, 3, 5and 7) to highlight how the agents learn to inrease their in-dividual rewards by revealing their ations. We experimentwith 3 � 3 game matries. Eah agent has three ations tohoose from, where ais are the ations of agent A and bisthose of agent B. For any ation ombination, the top-rightvalue in the orresponding matrix ell is the payo� to agentB and the bottom-left value is the payo� to agent A. Theshaded entry in eah matrix orresponds to the Nash Equi-librium strategy-pro�le. The ation-pro�le that the agentsprefer (greedy) and the desirable non-myopi solutions arealso marked in eah game-matrix. Our experiments are de-signed to evaluate the EUPs with no revelation, EUPs withAlternate revelation hoie and EUPs with Simultaneousrevelation hoie.
4.1 Choice of MatricesWe use the four matries to demonstrate the followingresults:� Matrix 1 (see �gure 1) is used to demonstrate howthe two agents learn to hoose the Nash Equilibriumand not the Pareto-optimal solution irrespetive of thestrategy hosen.� Matrix 2 (see �gure 3) is used to demonstrate howthe two agents learn to hoose the desirable Nash Equi-librium (whih inidentally is the Pareto-optimal solu-tion) irrespetive of the strategy hosen.



� Matrix 3 (see �gure 5) is used to demonstrate how theagents learn to hoose the desirable Nash Equilibrium(whih inidentally is the Pareto-optimal solution) us-ing Alternate revelation hoie and Simultaneous rev-elation hoie whereas EUPs fail to reah the desiredsolution.� Matrix 4 (see �gure 7) is used to demonstrate howSimultaneous revelation hoie outperforms Alternaterevelation hoie whih, in turn, outperforms EUPs.
4.2 Experiments with Matrix 1The matrix in �gure 1 has a single pure Nash Equilibriumgiven by the ation-pro�le ha3; b3i giving a payo� of 5 toboth agents. The desirable solution (Pareto-optimal), how-ever, is for the ation-ombination ha1; b1i giving a payo�of 10 to both agents. We used two EUPs using the aboveQ-learning algorithm, learning for 1000 iterations and using0.99 as the temperature deay fator starting at T = 10. Theprobabilities of adopting joint-ations ha1; b1i and ha3; b3ias measured by frequenies were reorded every 100 inter-ations averaged over the last 100 interations. The valuesin the �gures were averaged over 10 runs, and these proba-bilities are plotted in �gure 2 (left). In this ase, the EUPsonverge to the Nash Equilibrium in most of the runs eventhough the payo� is less than the desirable payo�. This isbeause the payo� matrix is onstruted suh that a3 is thebest response (atually in this example, a3 and b3 are alsothe agents' dominant strategies) of agent A irrespetive ofB's hoie and b3 is the best response of agent B irrespetiveof A's hoie.We ahieved similar results when we inorporated Alter-nate revelation strategy and Simultaneous revelation strat-egy in our agents. The probabilities of adopting joint-ationsha1; b1i and ha3; b3i are plotted in �gure 2 (middle and right).
4.3 Experiments with Matrix 2The matrix in �gure 3 has both ha1; b1i and ha3; b3i aspure Nash Equilibria. ha1; b1i is also the Pareto-optimal so-lution. The EUPs learn to adopt the desirable ation ombi-nation ha1; b1i in most runs as shown in the probability plotin �gure 4 (left). A similar result is obtained in both Alter-nate and Simultaneous revelation. The probability plots areshown in �gure 4 (middle and right).
4.4 Experiments with Matrix 3The matrix in �gure 5 has two pure Nash Equilibria givenby the ation-pro�le ha3; b3i giving a payo� of 5 to bothagents and the ation-pro�le ha1; b1i giving a payo� of 10to both agents. The desirable solution, however, is for theation-ombination ha1; b1i giving a payo� of 10 to bothagents. In this ase, the EUPs onverge to the undesirableNash Equilibrium in most of the runs even though the payo�is less than the desirable payo�. This is beause the payo�matrix is onstruted suh that a3 is the best response (a-tually in this example, average payo�s for ations a3 and b3are higher than ations a1 and b1) of agent A irrespetive ofB's hoie and b3 is the best response of agent B irrespe-tive of A's hoie. The probabilities of adopting joint-ationsha1; b1i and ha3; b3i are plotted in �gure 6 (left).The quadrati programming approah [3℄ produed a mixedstrategy (probability distribution) of [0; 0; 1℄ and [0; 0; 1℄ forthe agents A and B respetively. This orresponds to se-leting the ha3; b3i ation ombination. Thus, our EUPs

learn almost the same strategy as the mixed-strategy learn-ers seeking Nash Equilibrium.In both Alternate and Simultaneous revelation sheme,the agents learn that their best response is to selet ation1 when the other agent selets ation 1 as shown in �gure 6(middle and right). When agent A reveals ation 1, agent B(see �gure 5) will have higher probability of hoosing ation1 and vie versa.
4.5 Experiments with Matrix 4In the game matrix in �gure 7, ha3; b3i is the only pureNash Equilibrium. However, ha1; b1i is the desirable solu-tion. From �gure 8 (left) we an see that the EUPs learn toselet ha3; b3i (the Nash Equilibrium solution).The pro�le learned by 1-level mixed strategy agent for thematrix in �gure 7 (left) is [0:09; 0; 0:91℄ and [0:09; 0; 0:91℄ forA and B respetively. This gives an expeted reward of 5.45to eah of the mixed-strategy equilibrium learners, whereasour EUPs reeive expeted reward of 5.0 for seletion of thejoint-ation ha1; b1i alone.In the Alternate revelation sheme/strategy, the agentstake ations ha1; b1i and ha3; b3i with almost equal proba-bility (see �gure 8 (middle)). Thus, the expeted reward forthe agents is more when they reveal their ation than whenthey do not do so (EUPs).Finally, in the Simultaneous revelation sheme/strategy,the agents hoose the ation-pro�le ha1; b1i in most of theruns (see �gure 8 (right)). Thus, the agents learn to hoosethe desirable ation-pair ombination in this sheme/strategy.In the Alternate revelation sheme, eah agent is givena hane to reveal irrespetive of whether it has learnt toreveal or not. In the above experiments using revelationshemes, A learns not to reveal its ation (whenever A re-veals ation 1, B exploits A by taking ation 3) whereas Bhas learnt to reveal its ation (ation 1). In every alternateiteration (whenever B gets the hane to reveal) B reveals itsation (ation 1) and A makes its hoie of ation (ation1 with highest probability) based on that. However, dur-ing A's hane to reveal, A does not reveal its ation (playsation 3) and hene the agents always hoose ation-pairha3; b3i. So, the agents hoose ation-pair ha1; b1i wheneverB's turn for revelation omes and ation-pair ha3; b3i when-ever A's turn for revelation omes.In the Simultaneous revelation sheme, B (having learntto reveal) always reveals its ation (ation 1) and hene, Atakes its best ation (ation 1 with highest probability) giventhat B has taken ation 1. A has not learnt to reveal andhene never seeks to do so. Thus, both agents take ation 1and reah the desirable solution.The question of mutual trust an be highlighted in the ma-trix in �gure 7. If a ombination of ha1; b1i is being played,agent B has the inentive to hange its ation from b1 to b3to inrease its payo� from 10 to 11. When it makes suh ahange, A's optimal response would be to hange from a1 toa3 to inrease its payo� from 4 to 5. Thus, in their haste torespond optimally to the urrent situation, both agents on-verge to an equilibrium whih pays them half of what theyould have got if they had showed restraint. Eah of ourEUPs (in the simultaneous revelation sheme), on the otherhand, trusts the other's probability-distribution over the a-tions (given that one of them reveals information about itsation seletion) and selets its ation stohastially basedon that distribution. Thus they progressively tend towards
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5. CONCLUSIONS AND FUTURE WORKOur basi result is that there are ertain game-strutures,where stohasti modeling agents an onverge to high pay-o� points whih will be missed by sophistiated modelinglearners that are designed to produe Nash Equilibrium [3℄.We do not tout our empirial results as an argument foralways using EUPs.Our observation, however, learly demonstrates that learn-ing to selet a Nash Equilibrium is not neessarily the bestan agent an do, and that agents who are not bound bysuh riteria an sometimes do better. In future, we plan tostudy the theoretial basis for seletion of a non-equilibriumsolution and identify the nature and extent of mutual trustneessary to do so.An interesting observation from our results is that ationrevelation an lead to a more trusted behavior resulting inhigher payo�s to the agent. In the experiment with matrix3, agents (with ation revelation) hoose the more desirableNash Equilibrium in a matrix where there are two Nash
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