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ABSTRACT
In many negotiation and bargaining scenarios, a particular agent
may need to interact repeatedly with another agent. Typically, these
interactions take place under incomplete information, i.e., an agent
does not know exactly which offers may be acceptable to its oppo-
nent or what other outside options are available to that other agent.
In such situations, an agent can benefit by learning its opponent’s
decision model based on its past experience. In particular, being
able to accurately predict opponent decisions can enable an agent to
generate offers to optimize its own utility. In this paper, we present
a learning mechanism using Chebychev’s polynomials by which an
agent can approximately model the decision function used by the
other agent based on the decision history of its opponent. We study
a repeated one-shot negotiation model which incorporates uncer-
tainty about opponent’s valuation and outside options. We evalu-
ate the proposed modeling mechanism for optimizing agent utility
when negotiating with different class of opponents.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; I.2.6 [Artificial Intelligence]: Learning—Knowl-
edge acquisition

General Terms
Experimentation,Performance

Keywords
Negotiation, Chebychev polynomial, learning

1. INTRODUCTION
Both in human and multi-agent societies, negotiation is the most

well known approach to resolving conflicts. It is a widely-studied
subject in Economics, Law and Artificial Intelligence. With the
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massive growth of E-commerce, research in automated negotia-
tion is receiving increasing attention. Different forms of automated
negotiation have been studied analytically and experimentally. In
this paper, we focus on a one-shot negotiation problem, where two
agents are negotiating for an indivisible item. One of these agents,
the seller, possesses the item and the other, the buyer, wants to buy
it. In this model, the buyer proposes a price and the seller either ac-
cepts or rejects it. In real-life negotiation, there may also be other
buyers wanting to buy this item from the seller. This is known as
outside options in negotiation [11, 12]. Outside option is the price
available to the seller when the buyer is making the offer. As Li
et. al. [11] have shown, outside options influence the utility of the
agent (here seller) via its reservation price. A rational seller will
agree to the buyer’s proposal if the proposal is better than the out-
side options. Here price is the only issue being negotiated. Some-
times seller’s risk attitude may also play a role in the negotiation
outcome. We assume that a seller chooses a decision function based
on the risk attitude and expected outside option available from the
market. A decision function gives the probability of acceptance of
an offer given a price. The function is typically monotonic in the
sense that the higher the price offered by the buyer the larger is the
probability that the seller will accept that.

The negotiation framework we use is similar to the screening
game in the literature of bargaining games with asymmetric infor-
mation. As in the case of the screening game, one of the agents in
our framework has full information about the indivisible item be-
ing negotiated, but the other agent, without this information, moves
first. In our setting, the buyer always gains if there is a contract.
If the seller rejects the proposal, the buyer gets nothing. So, the
buyer’s goal is to make the contract while keeping the price as
low as possible. Under complete information, if the negotiation is
played for a single time, the subgame perfect equilibrium exist. In
equilibrium, the buyer proposes a small amount more than the out-
side options available to the seller and keeps the rest of the amount
and the seller agrees to it. But the assumption of complete informa-
tion is a limitation as in most scenarios an agent will not know the
other agent’s outside option and reservation price. Under incom-
plete information the equilibrium strategy will be for the buyer to
offer its reserve price to the seller and for the seller to accept if it is
more than the outside options and reject otherwise.

The scenario is more interesting when this game is repeated be-
tween the same buyer and seller. In real life, repeated negotia-
tion is common in many contracting scenarios, and in particular,
E-negotiation and different retail relationships. Though repeated
interaction is more realistic, unlike the single interaction case, the
existing literature does not provide a clear understanding of such
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scenarios. In this paper we will focus on the repeated negotiation
scenario. The objective of the buyer is to approximate the seller’s
decision function closely and as early as possible to be able to pro-
duce an offer that maximizes its long-term profit.

The ability to model the behavior of other agents in an MAS can
assist an agent to improve its performance in both cooperative and
competitive situations [14]. For example, the ability to model the
behavior of another agent can enable the modeling agent to predict
the behavior of the other agent provided they sense the world simi-
larly. In a cooperative setting, the ability to predict the actions to be
taken by another agent will enable the modeling agent to choose its
actions to coordinate with the other agents. In a competitive setting,
the ability to predict the behavior of the opponent will provide the
modeling agent with the opportunity to choose exploitative actions
to maximize its own utility. The latter approach is, for example,
adopted by game playing agents that can learn the strategy being
used by its opponent [2].

Observation-based coordination is a very attractive and plausible
approach to developing coherent behavior in an MAS which alle-
viates the need for explicit communication between agents [8]. An
observation-based plan-recognition approach uses general domain
information and observed actions of another agent to predict future
plans of that agent. This may not necessarily lead to a modifica-
tion of the model of the other agent. Our goal is complementary in
the sense that we want to observe past actions taken or decisions
made by another agent to identify the decision policy being used
by that agent. The model thus generated can then be used as a pre-
dictive mechanism to anticipate future decisions to be taken by the
modeled agent.

An important characteristic that is desirable for modeling pro-
cedures in an MAS is that it can be used on-line by agents. This
in turn require two things: (a) the procedure should be able to in-
crementally build models as more and more information is received
about the behavior of other agents, (b) the procedure should be easy
to compute. In this paper, we have developed a computationally
cheap algorithm, using Chebychev polynomials, with proven con-
vergence properties to approximate arbitrary probability functions
over an input variable defined over the range [-1,1]. The algorithm
is incremental in nature, i.e., it can develop incrementally better
models as more and more data (observations) become available.
The computational time for incremental updates is linear in the
number of orthogonal polynomials used, and hence the computa-
tional costs are minimal. We prove that under infinite sampling, the
algorithm is guaranteed to converge to the actual underlying prob-
ability function. Using extensive experiments, we have shown that
the agents using this algorithm outperforms other simple opponent
learning algorithms and other representative reactive heuristics of
bargaining. We have also experimentally shown that this modeling
procedure is robust to noisy data.

2. BUYER AGENT BEHAVIORS
In this section, we describe the following four agent strategies.

We assume that buyers use these strategies to bargain with the
seller. Each of the buyer agent knows a lower limit, low, and a
higher limit, high, such that the probability that the seller will ac-
cept any offer greater than or equal to high is 1 and any offer less
than or equal to low is zero.

Chebychev buyer: This strategy initially explores by playing ran-
dom offers in the interval [low, high]. After exploring for
some interactions it approximate the opponent decision func-
tion by Chebychev polynomials. We discuss this approxima-
tion in the next section. It then plays the offer that maximizes

its expected utility. We define utility as high minus the offer.

Risk averse buyer: This strategy has an aversion to lose the con-
tract. Though an agent with this strategy starts offering with
low, if the seller rejects its offer it increases its offer by incr
in the next interaction. We can interpret this strategy as a
safe strategy which tries to maximize the probability of ac-
ceptance.

Risk seeking buyer: This is a risk loving strategy. In this strategy,
agent starts bargaining with an offer of low and increases of-
fer by incr in the next interaction if its current offer is rejected
consecutively for the last 5 times. But if the seller accepts its
offer even once, it will never increase its offer subsequently.

Step buyer: In this strategy agent tries to model opponent’s prob-
abilistic decision function by relative frequencies. It parti-
tion the interval [low, high] in T equal intervals, (xi−1, xi],
where i=1..T. Initially it offers randomly in the interval [low,
high] for exploration, similar to the Chebychev buyer strat-
egy. Then it approximates the opponent’s decision function
as the proportion of success in each interval. i.e., if there
are oi number of offers in the ith interval (xi−1, xi] and out
of them si times seller accepted the offer, then probability of
acceptance for that interval is taken to be pi = si

oi

. Then Step
buyer offer xopt where opt = argmaxi((high− xi) ∗ pi).

3. CHEBYCHEV POLYNOMIALS
Chebychev polynomials are a family of orthogonal polynomi-

als [6]. Any function f(x) may be approximated by a weighted
sum of these polynomial functions with an appropriate selection of
the coefficients.

f(x) =
a0

2
+

∞�
i=1

ai ∗ Ti(x)

where

Tn(x) = cos(n ∗ cos−1(x))

and

ai =
2

π

�
1

−1

f(x) ∗ Ti(x)
√

1− x2
dx

Working with an infinite series is not feasible in practice. We
can, however, truncate the above series and still obtain an approxi-
mation, f̂ (x), of the function [4]. The Chebychev polynomial con-
verges faster than the Taylor series for the same function. For a
rapidly converging series, the error due to truncation, i,e., using
only the first n terms of the series, is approximately given by the
first term of the remainder, anTn(x). We have chosen Chebychev
polynomials for function approximation because truncation points
can be chosen to provide approximate error bounds.

Function approximation in mathematics is obtained using or-
thogonal polynomials. This requires the knowledge of the value
of the function at certain input values. In our case, however, in-
stead of exact values of the probability function, we observed only
True or False decisions based on a sampling from the probability
function at different input values. This, then, constitutes a novel
application of Chebychev polynomials.

A viable mechanism for model development based on Cheby-
chev polynomials would require the development of an algorithm
for calculating the polynomial coefficients. We would also need to
prove that this algorithmic updates would result in a convergence
of the learned function to the actual probability function underlying
the sampled data. We provide such an algorithm and the associated
convergence theorem in the next section.
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4. AN ALGORITHM TO LEARN DECISION
POLICY

Let f(x) be the target function and f̂(x) be the approxima-
tion of it based on the set of samples S = {Sj}, where Sj =
〈xj , vxj

〉∀j = 1, 2, . . . , k and k = Number of instances. We have
vxj
∈ [True, False]. We may have to change the scale for the

values xj , so that all the values are in the range [−1 : 1] and we
get the approximated function in the range [−1 : 1], which we may
need to scale back to get the desired value.

Let n be the no of Chebychev polynomials we are going to use
for the purpose of learning. Let Ti(x), i ∈ [0..n] be the Chebychev
polynomials. The steps of the algorithm to calculate the polynomial
coefficients are:

1. Initialize Ci = 0, ∀i = 0, 1, 2, . . . , n

2. For all j do

3. ∀i = 0, 1, 2, . . . , n
If vxj

=T then,

Ci ← Ci +
Ti(x)
√

1 − x2

4. ∀i = 0, 1, 2, . . . , n
If vxj

=F then,

Ci ← Ci −
Ti(x)
√

1 − x2

5. End for

6. Set

f̂(x) = K ∗ (
C0

2
+

n�
i=1

Ci ∗ Ti(x))

where K = ψ(k) , is function of number of interactions.

7. Set

f̂(x) ← f̂(x) + 0.5

Theorem 1 Under complete information the algorithm can ap-
proximate the probability function.
Proof: See Appendix.

5. MODELING SAMPLE PROBABILITY
FUNCTIONS

In this section, we evaluate the performance of the algorithm
presented in the previous section when limited amount of deci-
sion samples are available. As a sample target function to test the
approximation algorithm, we used a sigmoidal function: f(x) =

1

1+exp(5∗x)
. The actual function and the polynomial approxima-

tion obtained for this functions obtained with different number of
samples are presented in Figure 1. We focus on the effect of the
number of decision samples available on the accuracy of the model
developed. We vary the sample size, k = 30, 100, and 1000. Sam-
ple x values were first randomly selected from a set of points in
the range [-1,1]. The underlying probability function was used to
calculate True or False decisions for these generated points. Cor-
responding input-decision pairs were then sequentially fed into the
algorithm. It is clear from Figure 1 that increasing the number of
samples improves the approximation. Though 30 samples produce
only a rough approximation of the target function , a fairly close
approximations obtained with about 100 samples.

-1

-0.5

0

0.5

1

1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

f(
x)

x

Gradual Approximation

30 Instances
100 Instances

1000 Instances
1/(1+exp(x*5))

Figure 1: Approximating f(x) = 1

1+exp(5∗x)
. Number of

Chebychev Polynomials used is 5 and sampling resolution is
100.

6. EXPERIMENTAL FRAMEWORK AND RE-
SULTS

We have designed our experimental framework to evaluate the
effectiveness of the bargaining strategy we have proposed under
different negotiation situations. In our simulation, we use the four
representative bargaining strategies discussed in Secion 2. To de-
scribe our experimental results, we use the following conventions:
Chebychev buyer, Risk Averse buyer, Risk seeking buyer and Step
buyers are represented by CB, RA, RS and SB respectively. We
also consider a hypothetical KN buyer who knows the seller’s de-
cision function exactly. We use the performance of the KN buyer
as the yardstick for measuring the effectiveness of the other strate-
gies. Unless stated otherwise, number of Chebychev polynomials
used by CB is 5. The SB buyer uses T = 50. Both these buyers
use 600 explorations to approximate the function and subsequently
choose offers based on the approximated seller model.

We assume a scenario where a seller produces an unique item
in each time period. Such a scenario is common in market situ-
ations where the demand of an item is more than the supply and
there exists a number of buyers wanting to buy an item for sell.
Based on expected outside options and risk attitude, a seller has a
decision function F (x), a probability function that gives the prob-
ability of acceptance an offer of x. This decision function is an
intrinsic property of the seller. We have experimented with differ-
ent monotonically increasing functional forms for seller decision
function F (x). For a given offer, x, F (x) returns the probability
of the seller to accept that offer. So, when a particular offer x is
made, a biased coin with weight F (x) is tossed by the seller to de-
termine whether or not to accept that offer. We sequentially choose
the different buyer strategies and negotiate against the same seller
for 2000 times. We have also experimented with sellers which has
a “noisy decision function” and with sellers which change their de-
cision functions slowly.

We assume that the upper and lower valuation limits of the item
are known to the buyers from experience. For example, if one wants
to buy a simple DVD player, he knows a loose upper and lower
bound of the price. In our experiments, the buyer knows that the
value of the item ranges between $900 to $3100. So in this set up
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Figure 2: Wealth earned by different buyer types. Seller’s de-
cision function is given in Equation 1. Exploration time = 600

the buyer will never propose anything outside this price range.
In the first set of experiments, the seller’s decision function is

F1(x) = 1 −
1

1 + exp 5∗(x−2000)

1000

, if x ∈ (1000, 3000).

= 1, if x ≥ 3000

= 0, if x ≤ 1000 (1)

Figure 2 shows the wealth generated by different buyer strate-
gies playing against the above seller. The figure shows that the
CB outperforms the other buyer strategies. After explorations, its
performance is almost same as KN (the two lines become approx-
imately parallel after 600 iterations), which means that it performs
as if it had access to the actual decision function used by the seller.
The performance of SB comes next to CB as it also approximates
seller’s decision function though not as effectively. In related ex-
periments we find that with higher number of intervals, T , and suf-
ficiently long exploration, SB can match the performance of CB
and KN . But the losses suffered during the extensive exploration
periods does not make that strategy competitive with CB. The RA
buyer is doing better than RS buyer as most of the time it makes
successful offers though keeping very low profit to itself. But this
is better than the stubborn strategy of the RS buyers whose offers
are rejected by the seller most of the time.

The second experiment is similar to the first one except that the
CB buyer is using only 20 iterations for exploration. From Fig-
ure 3 we see that the CB buyers is performing worse than the SB
buyer. The CB cannot approximate the decision function closely
with this minimal exploration. As a result, the model learned is not
effective and leads to worse performance compared to SB. Note
that the agent continues to learn throughout the experiment, includ-
ing outcomes from each iteration and re-calculating model approx-
imations. But as these new samples are only for the offer for which
expected utility is maximum, the overall input space is not being
sampled, and hence no noteworthy improvement in the model ap-
proximation is produced.
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Figure 3: Wealth earned by different buyer types. Seller’s de-
cision function is given in Equation 1. Exploration time = 20
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Figure 4: Wealth earned by different buyer types. Seller’s de-
cision function is given in Equation 2. Exploration time = 600

In the next experiment, we use a new decision function

F2(x) =
(x− 1000)0.4

(2000)0.4
, if x ∈ (1000, 3000).

= 1, if x ≥ 3000

= 0, if x ≤ 1000 (2)

The function in Equation 2 makes the seller inclined to accept lower
offers compared to the one in the first experiment. The wealth gen-
erated by the different buyers against this seller is shown in Fig-
ure 4. Since sufficient exploration time is given, the CB buyer
again outperforms all the other learning buyers and performs as
good as KN buyer after the exploration period. The interesting re-
sult in this case is the better performance ofRS buyers compared to
RA buyers. Since the probability of acceptance is higher here, the
RS buyers manage to eke out profitable contracts through tough
bargaining.

Next we experiment with a somewhat inconsistent seller. The
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Figure 5: Noisy environment with Gaussian noise ∼ Gaus-
sian(0,0.05)

experiment setting used is same as first experiment but here we
add a Gaussian noise ε ∼ N(0, 0.05) to the probability function,
i.e., we use F ′(x) = F1(x) + N(0, 0.05). The Figure 5 shows
that CB buyers handle this noise more efficiently compared to the
other buyers. After exploration it outperforms all the other adapting
buyers and approaching close to the baseline KN buyer.

So we find that over a range of scenarios buyers using CB strat-
egy are doing significantly better than other buyers using represen-
tative bargaining strategies when playing against the same oppo-
nent repeatedly. Now we turn to evaluating the CB buyers under
dynamic environmental conditions.

Comparing Figure 2 and Figure 3, we concluded that CB needs
to explore enough in order to closely approximate the decision
function and increases profit. We now present experiments with a
seller which becomes less inclined to accept the same offer in sub-
sequent interactions. After every 200 iterations the seller decreases
its probability of acceptance by replacing the previous F (x) by
F (x − 20). Results from this scenario (see Figure 6) show that
the CB strategy is performing much worse compared to the KN
buyer. This is because of the fact that after the initial exploration
phase, the buyer continues to use an outdated seller model. To rec-
tify this problem the buyer needs to explore at some regular inter-
vals to capture the changes in the seller policy. But the exploration
process involve a cost due to sub-optimal offer presentations. This
gives rise to two crucial questions: a) how frequently the agent
should explore and b) how much the agent should explore in each
exploration period. We use the following exploration schedule: a
buyer explores for τ consecutive offers (exploration-frequency) ev-
ery β offers (inter-exploration interval).

Figure 6 we present plots of performance of CB for different
values of β when τ = 10. We find that too frequent explorations
adversely affect performance because then the agent does not have
enough interactions in between exploration periods to recoup losses
during exploration. We see that the agent even performs worse for
β = 50 compared to β =∞, i.e., not exploring at all. But it man-
ages to do better if β = 200. In the next set of experiments (see
Figure 7) we fix β = 200 and vary τ from 5 to 50. We find that for
long exploration sequences, e.g., τ = 50, the buyer performs even
worse than when it does no periodic exploration. This is because
of the high cost of exploration. But with small exploration frequen-
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Figure 6: Wealth earned by the CB buyers using different inter-
exploration interval
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cies, e.g., 5, the buyer is able to keep pace with changes in the seller
decision function. Of course, the optimal inter-exploration interval
depends on how often the seller changes its decision function and
the optimal exploration-frequency depends on the rate of change of
the seller decision function.

7. RELATED WORK
Negotiation has long been studied [13] in Economics, Business,

Law and Computer Science. In the past few years, automated ne-
gotiation has been studied extensively in the multiagent commu-
nity [9, 10]. Research in multiagent systems addresses several ne-
gotiation issues like time constraints [10], deadline [15], outside
options [11], different incomplete information settings [5], etc. Our
research is different from all of these as we focus on modeling op-
ponent decision function in repeated one-shot negotiation. We ap-
proximated opponent decision model using Chebychev’s polyno-
mials and use this to determine the optimal offer.

401



Carmel and Markovitch have used restrictive assumptions about
the behavioral strategies being used by other agents to derive a sim-
ple finite automata model of another agent from its input/output
behavior [3]. They then proceed to derive an optimal interaction
strategy with that opponent. The work presented in this paper can
develop models of more complex decision policies. Bui et al. [1]
uses past responses about meeting scheduling requests to develop
a probability distribution of open time slots in the calendar of other
agents. Gmytrasiewicz and Durfee presents a decision-theoretic
approach to updating recursive models of other agents [7]. Their
model updating procedure, however, is based more on assumptions
of rationality of the other agent and is not dependent on observed
behavior of other agents. Zeng and Sycara present a learning mech-
anism by which agents can learn about payoff structures of other
agents in a sequential negotiation framework [16]. The knowledge
acquired by these agents if more of a threshold of acceptance rather
than a general decision procedure over the range of input values.

8. CONCLUSION AND FUTURE WORK
We have experimentally evaluated the relative effectiveness of

different buyer strategies for modeling the seller decision func-
tion under a repeated one-shot negotiation framework. We study a
particularly interesting learning problem of inferring a probabilis-
tic decision function over an input space based only on sampled
yes/no responses from the input space using that probability func-
tion. Hence the learning problem studied here is very different from
traditional function approximation problem where actual sampled
function values are available as inputs to the model learner. We
propose a novel learning approach using Chebyshev’s polynomials
and show its performance using extensive experimental settings.
For most environmental settings, our modeling approach outper-
forms representative bargaining heuristics while repeatedly negoti-
ating against a seller with a probabilistic decision function. We also
evaluated the robustness of this modeling approach against noisy
decisions.

We plan to extend this work in several directions. A very promis-
ing area of research would be to develop modeling of opponent
decision functions in multi-step, instead of one-shot negotiation
scenarios. Strategic information revealing during early negotiation
stages can be used both to guide the negotiation process and sig-
nal preferences to a learning opponent. We also plan to extend this
work to multi-issue bargaining and use this and other learning tech-
niques to learn the preference structure of the agents in multi-issue
bargaining.
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APPENDIX
Proof of Theorem 1

We know, that any function can be represented as a combination
of Chebychev polynomials as,

f(x) =
a0

2
+

∞�
i=1

ai ∗ Ti(x)

Next, we are going to prove that the function f̂ (x) tends to f(x)
as more and more samples of the function, of greater resolution is
received. We have

Ci =
�

π
∗ {

k�
j=1

(f(xj) +4f(xj))�
1− x2

j

∗ Ti(xj) +

k�
j=1

1− (f(xj) +4f(xj))�
1 − x2

j

∗ (−Ti(xj))},
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where � is a function of no of interactions and can be given by
� = C

k
and4f(x) = |f(x)− f̂ (x)| and4f(x) is in the order of

1

k
. So,simplifying we get,

Ci =
�

π
∗ {2 ∗

k�
j=1

f(xj) +4f(xj)�
1 − x2

j

∗ Ti(xj)−
k�

j=1

Ti(xj)�
1 − x2

j

}

Now, in case of infinite sampling and infinite resolution, we have,

k →∞⇒ �→ 0⇒4f(x)→ 0.

So for i = 0, i.e. the coefficient becomes,

C0 = lim
φ→0

�

π
∗ {2 ∗

k�
j=1

f(xj)�
1− x2

j

∗ T0(xj)−
k�

j=1

T0(xj)�
1 − x2

j

}

C0 = lim
φ→0

1

π
∗{2∗

k�
j=1

f(xj)�
1 − x2

j

∗T0(xj)∗�−

k�
j=1

T0(xj)�
1 − x2

j

∗�}

C0 =
�

π
∗ {2 ∗

�
x

f(x)
√

1 − x2
∗ T0(x)dx−

�
x

T0(x)
√

1 − x2
dx}

As, the x range is [-1:1] and in case of infinite sampling and
resolution we have information at all the values of x, the integral
limits becomes,

C0 =
1

π
∗ {2 ∗

�
1

−1

f(x)
√

1 − x2
∗ T0(x)dx−

�
1

−1

T0(x)
√

1− x2
dx}

⇒ C0 = {
2

π
∗

�
1

−1

f(x)
√

1 − x2
∗ 1dx−

1

π
∗

�
1

−1

1
√

1− x2
dx}

⇒ C0 = a0 −
1

π
∗ π = a0 − 1

As, T0(x) = 1. Similarly, ∀i = 1, 2, . . . , n,

Ci =
1

π
∗ {2 ∗

�
1

−1

f(x)
√

1 − x2
∗ Ti(x)dx−

�
1

−1

Ti(x)
√

1− x2
dx}

⇒ Ci = {
2

π
∗

�
1

−1

f(x)
√

1− x2
∗ Ti(x)dx−

1

π
∗

�
1

−1

Ti(x)dx}

⇒ Ci = ai

as from orthogonality property,

�
1

−1

Ti(x)
√

1 − x2
dx = 0, ∀i = 1, 2, . . . , n

Given,

f̂(x) =
C0

2
+

∞�
i=1

Ci ∗ Ti(x)

f̂(x) =
a0

2
− 0.5 +

∞�
i=1

ai ∗ Ti(x)

f̂(x) = f(x)− 0.5,

and therefore in the last step of the algorithm we increment f̂ (x)
by 0.5.
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