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ABSTRACTMultiagent learning literature has looked at iterated two-player games to develop mehanisms that allow agents tolearn to onverge on Nash Equilibrium strategy pro�les.Suh equilibrium on�guration implies that there is no mo-tivation for one player to hange its strategy if the otherdoes not. Often, in general sum games, a higher payo� anbe obtained by both players if one hooses not to respondoptimally to the other player. By developing mutual trust,agents an avoid iterated best responses that will lead to alesser payo� Nash Equilibrium. In this paper we onsider1-level agents (modelers) who selet ations based on ex-peted utility onsidering probability distributions over theations of the opponent(s). We show that in ertain situa-tions, suh stohastially-greedy agents an perform better(by developing mutually trusting behavior) than those thatexpliitly attempt to onverge to Nash Equilibrium.
1. INTRODUCTIONThe reinforement learning tehniques with performane andonvergene guarantees have been developed for isolated sin-gle agents. The underlying assumption of suh a proof isthat the environment is stationary. Multi-agent or onur-rent learning, however, violates this assumption. As a re-sult, the standard reinforement learning tehniques (like Q-learning) are not guaranteed to onverge in a multi-agent en-vironment. The desired onvergene in multiagent systemsis on an equilibrium strategy-pro�le (olletion of strategiesof the agents) rather than optimal strategies for an individ-ual agent.The stohasti-game (or Markov Games) framework, a gen-eralization of Markov Deision Proesses for multiple play-ers, has been used to model learning by agents in variousdomains [4, 3, 2℄. In [2℄, two basi types of multiagent learn-ers have been studied. The learners who do not model otheragents, e�etively onsidering them as passive parts of anon-stationary environment, are alled `independent learn-ers' (ILs). We term these 0-level agents. In ontrast to

suh agents, those that observe others' ations and rewardsand use these expliitly in modeling them, are alled 'joint-ation learners' (JALs). We all these 1-level agents. Theo-rem 1 in [2℄ laims that both 0 and 1-level agents onvergeto equilibria in purely ooperative domains (oordinationgames). But their work is not extendible to general domains(general-sum games). The authors in [3℄ have adopted aomplete-information general-sum game approah and pro-vide a learning sheme that allows learners to onverge to amixed-strategy Nash Equilibrium in the limit.Nash Equilibrium, however, does not guarantee that agentswill obtain the best possible payo�s. Some non-Nash Equlib-rium ation ombinations may yield better payo�s for bothagents, whih may be reahed if the agents look ahead whileseleting ations [1℄. Suh desirable non-myopi hoies arepreferred by both agents. While playing best response toother agents' urrent poliy will lead to a deviation fromsuh desirable solutions, restraint or mutual trust an en-able players to stik to suh ation ombinations.In this paper we evaluate the possibility of onurrent learn-ers onverging to suh desirable non-myopi ation hoies.While Hu andWellman's approah is guaranteed to onvergeto Nash Equilibrium strategy pro�les [3℄, independent, oreven ordinary 1-level Q-learners have no suh guarantees. Inour previous work, we have observed that 0-level Q-learnersoften outperformed higher-level Q-learners in the long runeven though their learning rate is slower [6℄. In this paperwe show that greedy modelers an, in their turn, outper-form equilibrium seeking modelers in terms of the rewardsreeived.
2. DEFINITIONSIn this setion, we introdue some de�nitions to formulatea framework for onurrent learning.Definition 1. A Markov Deision Proess (MDP) is aquadruple fS;A; T;Rg, where S is the set of states, A is theset of ations, T is the transition funtion, T : S � A !PD(S), PD being a probability distribution, and R is thereward funtion, R : S �A!R.Amultiagent reinforement-learning task an be looked uponas an extended MDP, with S speifying the joint-state of theagents, A being the joint-ations of the agents, (A1 �A2 �: : : An where Ai is the set of ations avaiable to the ith



agent), T as the joint state-transition funtion, and the re-ward funtion is rede�ned as R : S�A!Rn. The funtionsT and R are usually unknown, neessitating learning. Thegoal of the ith agent is to �nd a strategy �i that maximizesits expeted sum of disounted rewards,v(s; �i) = 1Xt=0 tE(ritj�i; ��i; s0 = s)where s0 is the initial joint-state, rit is the reward of the ithagent at time t,  2 [0; 1) is the disount fator, and ��iis the strategy-pro�le of i's opponents. In [3℄ the ith agentlearns ��i simultaneously, and opts for the best response toit. Though myopially this is the best an agent an do, itmay miss opportunities for reeiving higher payo�s as in thewell-known Prisoner's Dilemma problem [9℄.Definition 2. A bimatrix game is given by a pair of ma-tries, (M1;M2), (eah of size jA1j � jA2j) for a two-agentgame, where the payo� of the ith agent for the joint a-tion (a1; a2) is given by the entry Mi(a1; a2); 8(a1; a2) 2A1 �A2; i = 1; 2.Eah stage of an extended-MDP for two agents (it an beextended to n agents using n-dimensional tables instead ofmatries), an be looked upon as a bimatrix game. A zero-sum game is a speial bimatrix game where M1(a1; a2) +M2(a1; a2) = 0; 8(a1; a2) 2 A1 � A2. In this paper weonsider general-sum games, where the above sum is nota onstant, and hene the individual payo�s of the agentsfor any joint-ation are unorrelated. We now de�ne Nashequilibrium for suh games.Definition 3. A pure-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of ations (a�1; a�2) suhthat M1(a�1; a�2) �M1(a1; a�2) 8a1 2 A1M2(a�1; a�2) �M2(a�1; a2) 8a2 2 A2In a Nash equlibrium the ation hosen by eah player isthe best response to the opponent's urrent strategy and noplayer in this game has any inentive for unilateral deviationfrom its urrent strategy. A general-sum bimatrix game maynot have any pure-strategy Nash Equilibrium.Definition 4. A mixed-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of probability vetors (��1 ; ��2)suh that ��1 0M1��2 � �01M1��2 8�1 2 PD(A1)��1 0M2��2 � ��1 0M2�2 8�2 2 PD(A2)where PD(Ai) is the set of probability-distributions over theation spae of the ith agent.A signi�ant property of mixed-strategy Nash Equilibria, isthat there always exists at least one suh equilibrium pro�le

for an arbitrary �nite bimatrix game [7℄. Given suh a bima-trix game (M1;M2), the mixed-strategy Nash Equilibrium,(��1 ; ��2), an be omputed using a quadrati programmingapproah as outlined in [5℄.
3. Q-LEARNINGA general, single-agent reinforement learning task is anMDP, where the state transition and reward funtions T andR are unknown. A simple, model-free and on-line tehniquefor reinforement learning is Q-learning [11℄. In a statelessdomain, as is the ase with single-stage games studied inthis paper, an independent Q-learner will have Q-values foreah ation a, Q(a), and update them based on rewards rreeived from taking ation a as follows:Q(a) Q(a) + �(r �Q(a))where � is the learning-rate. This iteration has been provedto onverge to optimal Q-values, for a partiular strutureof �, but independent of any partiular exploration strat-egy provided it satis�es some general requirements. Whena number of independent learners apply this algorithm, theonvergene-guarantee does not hold due to the non-stationarityof the environment. However, suh straightforward applia-tions of Q-learning in multiagent systems have ahieved su-ess in the past [2, 8, 10, 12℄. Our 1-level Q-learners learnQ-values, Q(a; b), for eah possible joint-ation (a; b), usingits observation of the ations of the other agents, but solelyits own reward for joint-ation. Thus the updation-rule usedis Q(a; b) Q(a; b) + �(r �Q(a; b))To allow these 1-level Q-learning agents to inreasingly ex-ploit their learned strategies, we use the Boltzmann explo-ration strategy, whih slowly inreases the exploitation prob-ability. In this exploration sheme, the ation a is seletedwith probability eE(Q(a))=TPa0 eE(Q(a0))=T :where E(Q(a)) = Pb pbQ(a; b), pb being omputed as therelative-frequeny measure from B's ation history. Thus weall these agents \expeted utility based probabilisti learn-ers" or (EUPs). The temperature parameter T is started ata high value (ausing more exploration) and then dereasedover time, e.g., by muliplying with a deay fator, to inreasethe exploitation probability.
4. EXPERIMENTSWe experiment with 3 � 3 game matries. Eah agent hasthree ations to hoose from, where ais are the ations ofagent A and bis those of agent B. In �gures 1, 2, 3 and 4we present four suh matries. For any ation ombination,the top-right value in the orresponding matrix ell is thepayo� to agent B and the bottom-left value is the payo�to agent A. The shaded entry in eah matrix orrespondsto the Nash Equilibrium strategy-pro�le. The ation-pro�lethat the agents prefer (greedy) and the desirable non-myopisolutions are also marked in eah game-matrix.In �gure 1(left) there is a single pure Nash Equilibrium givenby the ation-pro�le ha3; b3i giving a payo� of 5 to both
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Figure 1: Game matrix where a3 and b3 are individually preferable to the agents, also only ha3; b3i is theNash Equilibrium (left). The probability plots for the joint ations ha1; b1i (solid) and ha3; b3i are shown onthe right.agents. The desirable solution, however, is for the ation-ombination ha1; b1i giving a payo� of 10 to both agents.We used two EUPs using the above Q-learning algorithm,learning for 10,000 iterations and using 0.999942 as the tem-perature deay fator starting at T = 1. The probabilitiesof adopting joint-ations ha1; b1i and ha3; b3i as measuredby frequenies were reorded every 500 interations aver-aged over the last 500 interations. The �gures were av-eraged over 10 runs, and these probabilities are plotted in�gure 1(right). In this ase, the EUPs onverge to the NashEquilibrium in most of the runs even though the payo� is lessthan the desirable payo�. This is beause the payo� matrixis onstruted suh that a3 is the best response (atually inthis example, a3 and b3 are also the agents' dominant strate-gies) of agent A irrespetive of B's hoie and b3 is the bestresponse of agent B irrespetive of A's hoie. However, inone run, the desirable ation ombination was seleted bythe learners.We then redued A's payo� for ha3; b1i and B's payo� forha1; b3i to 9 so that both ha3; b3i and ha1; b1i are pure NashEquilibria (�gure 2(left)). However, ha1; b1i is the desirablesolution. The orresponding probability plots are reportedin �gure 2(right). Here too the EUPs onverge to the unde-sirable Nash Equilibrium and for the same reasons as listedabove. The quadrati programming approah [3℄ produeda mixed strategy (probability distribution) of [0; 0; 1℄ and[0; 0; 1℄ for the agents A and B respetively. This orre-sponds to seleting the ha3; b3i ation ombination. Thus,our EUPs learn almost the same strategy as the mixed-strategy learners seeking Nash Equilibrium.For the probability plot in �gure 3 (right), the matrix onleft has both ha1; b1i and ha3; b3i as pure Nash Equilibria.The EUPs learn to adopt the desirable ation ombinationha1; b1i in most runs. We then modi�ed the matrix by in-reasing B's payo� from ha1; b3i to 11 (�gure 4 (left)), thusleaving ha3; b3i as the only pure Nash Equilibrium in thismatrix. From �gure 4 (right) we an see that the EUPs stillsueed in seleting the desirable solution more often than

ha3; b3i, even though it is not the Nash Equilibrium solution.The pro�le learned by 1-level mixed strategy agent for thematrix in �gure 4 (left) is [0:09; 0; 0:91℄ and [0:09; 0; 0:91℄ forA and B respetively. This gives an expeted reward of 5.45to eah of the mixed-strategy equilibrium learners, whereasour EUPs reeive expeted reward of 6.3 for seletion of thejoint-ation ha1; b1i alone.The question of mutual trust an be highlighted in the ma-trix in �gure 4 (left). If a ombination of ha1; b1i is beingplayed, agent B has the inentive to hange its ation fromb1 to b3 to inrease its payo� from 10 to 11. When it makessuh a hange, A's optimal response would be to hangefrom a1 to a3 to inrease its payo� from 4 to 5. Thus,in their haste to respond optimally to the urrent situation,both agents onverge to an equilibrium whih pays them halfof what they ould have got if they had showed restraint.Eah of our EUPs, on the other hand, trusts the other'sprobability-distribution over the ations and selets its a-tion stohastially based on that distribution. Thus theyprogressively tend towards the mutually bene�ial part oftheir searh spae, emulating restraint whih leads to mu-tual bene�t.
5. FUTURE WORKOur basi result is that there are ertain game-strutures,where stohasti modeling agents an onverge to high pay-o� points whih will be missed by sophistiated modelinglearners that are designed to produe Nash Equilibrium [3℄.We do not tout our empirial results as an argument foralways using EUPs.However, our observation learly demonstrates that learn-ing to selet a Nash Equilibrium is not neessarily the bestan agent an do, and that agents who are not bound bysuh riteria an sometimes do better. In future, we plan tostudy the theoretial basis for seletion of a non-equilibriumsolution and identify the nature and extent of mutual trustneessary to do so.
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Figure 2: Game matrix where a3 and b3 are relatively preferable to the agents while both ha1; b1i and ha3; b3iare the Nash Equilibria (left). The probabilitry plots for the joint ations ha1; b1i (solid) and ha3; b3i are shownon the right.We also believe that joint learners an be augmented witha greedy lookahead poliy [1℄ rather than the best responsepoliy (whih orresponds to an immediate greedy poliy)to improve their likelihood of seleting non-myopi equilib-rium solutions. We plan on investigating suh algorithmsfor disounted rewards.
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Figure 3: Game matrix where a1 and b1 are relatively preferable to the agents while both ha3; b3i and ha1; b1iare the Nash Equilibria (left). The probabilitry plots for the joint ations ha1; b1i (solid) and ha3; b3i are shownon the right.
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Figure 4: Game matrix where a1 and b1 are relatively preferable to the agents but only ha3; b3i is the NashEquilibrium (left). The probabilitry plots for the joint ations ha1; b1i (solid) and ha3; b3i are shown on theright.


