
E�ects of misconception on reciprocative agentsSandip Sen & Anish BiswasDepartment of Mathematical & Computer Sciences,The University of TulsaPhone: (918) 631-2985, FAX: (918) 631-3077e-mail: sandip@kolkata.mcs.utulsa.edu,abiswas@euler.mcs.utulsa.eduAbstractIn open systems, agents act to serve their self-interests in-stead of working towards group goals. We investigate thechoice of interaction strategies and environmental charac-teristics that will make the best self-interested actions to becooperative in nature. In our previous work, we have pre-sented a probabilistic reciprocity mechanism that producesstable, cooperative behavior among a group of self-interestedagents. The resultant system was found to exhibit close tooptimal throughput with a fair distribution of the workloadamong the participating agents. In this paper, we test therobustness of this scheme by changing some of the assump-tions used before. In particular, we evaluate the perfor-mance of reciprocative agents when an agent receiving helpfrom another agent underestimates the cost incurred by thehelping agent. This kind of misconceptions can derail coop-erative processes leading to disintegration of stable groups.Results from experiments with several kinds of misconcep-tions, however, testify to the robustness of the reciprocativestrategy.1 IntroductionResearchers involved in the design of intelligent agents thatwill interact with other agents in an open, distributed sys-tem are faced with the challenge of modeling other agentsand their behavior [5]. If one can can assume that all agentswill be cooperative in nature, e�cient mechanisms can bedeveloped to take advantage of mutual cooperation. But, inan open system, assumptions about cooperative agents orsystem-wide common goals are hard to justify. More often,we will �nd di�erent agents have di�erent goals and motiva-tions and no real inclination to help another agent achieveits objectives.We assume agents to be self-motivated in their inter-actions with other agents, and that interacting agents areuniquely identi�able. An agent may help others in perform-ing tasks. We develop a criteria for an agent to decide tohelp or not to help another agent when the latter requestsfor help. The decision criteria should be such that it al-

lows an agent to perform e�ectively in the long run. Thismeans that to be e�ective, an agent must be able to adaptits behavior depending on the behavior of other agents inthe environment.In our previous work, we have presented a simple de-cision mechanism using the principle of reciprocity, whichsuggests that agents help others who have helped them inthe past or can help them in the future. By using a multia-gent domain where agents can exchange their tasks, we haveshown that agents can use the principle of reciprocity to ef-fectively adapt to the environment, optimizing local perfor-mance [12]. We developed a probabilistic reciprocity mech-anism that was found to be stable against invasion by sel�shagents (agents who received help but never helped others).There were two underlying assumptions in the papermentioned above which cast some doubts about the pos-sibility of practical application of our proposed strategy:Accurate cost information: When an agent A incurs acost c to help agent B and saves the latter an amount s, wesay agents have accurate cost information if the values c ands are known to both of them. If agent B has only an esti-mate, ~c of c, we say B is underestimating or over-estimatingthe cost incurred by A if ~c< c or ~c> c respectively. Under-estimation is a common group malady and can jeopardizeagent relationships or destabilize working partnerships. Weinvestigate the e�ects of over and under-estimation of helpcosts by reciprocative agents. Such evaluation involves bothperformance of homogeneous groups, as well as testing thestability of the reciprocative strategy in the presence of self-ish agents.Bene�cial cooperation: This assumption states that anagent asks help from another agent to achieve a task onlyif the cost incurred by the helping agent will be less thanthe savings obtained by the asking agent. This means thatfor each instance of cooperation (one agent helping another)there is a net savings in the cost incurred in the system. Inreal life, if I believe someone else owe me a favor, I can askthat person to complete one of my tasks, even if the costincurred by that person to complete the task may be morethan what it would have cost me to complete that task. Thiswould be an example of what we call a non-bene�cial coop-eration (from the system point of view, as the recipient ofhelp always bene�ts). In this paper, we study the perfor-mance of our reciprocity mechanism when both bene�cialand non-bene�cial cooperations are allowed. The latter isexpected to erase some of the bene�ts of bene�cial cooper-ation, but which of the two forms of cooperation dominateis an open question in general.



2 Reciprocity as an adaptive mechanismThe evolution of cooperative behavior among a group ofself-interested agents have received considerable attentionamong researchers in the social sciences and economics com-munity. Researchers in the social sciences have focused onthe nature of altruism and the cause for its evolution andsustenance in groups of animals [7, 11, 13]. Mathematicalbiologist and economists have tried to explain the rational-ity of altruistic behavior in groups of self-interested agentsby proposing various �tness models that analyze the successof altruistic individuals and more importantly the evolutionof genetic traits supporting altruistic behavior [4, 8, 9]. Ourgoal in this paper is not to model altruistic behavior in an-imals; so we do not address the issues raised in the socialscience literature on this topic. Our purpose is to proposemechanisms by which cooperation can be encouraged andestablished in groups of self-interested agents. Other re-searchers in multiagent systems are beginning to evaluatethe e�ects of mutual help for survival [3]. Most of the workby mathematical biologists or economists on the evolutionof altruistic behavior deals with the idealized problem calledPrisoner's dilemma [10] or some other repetitive, symmet-rical, and identical `games'. Some objections have alreadybeen raised to using such sanitized, abstract games for un-derstanding the evolution of complex phenomena like recip-rocal altruism [2].In a seminal piece of work Robert Axelrod has shownhow stable cooperative behavior can arise in self-interestedagents when they adopt a reciprocative attitude towardseach other [1]. Axelrod shows that a simple, deterministicreciprocal scheme of cooperating with another agent whohas cooperated in the previous interaction, is quite robustand e�cient in maximizing local utility. Two properties ofthis tit-for-tat strategy deserve special mention: (a) if allagents use this strategy, system performance is optimal, (b)it is stable against invasion by agents using other strategies(i.e., if an agent using another strategy is introduced into agroup of tit-for-tat agents, the former cannot obtain greaterutility than that obtained by tit-for-tat agents). ThoughAxelrod's work is interesting and convincing, we have ar-gued [12] that the assumptions used in his work makes theresults inapplicable in a number of practical domains. Someof the problematic assumptions are:Initial decision:Axelrod assumes that such agents start of cooperating; ifagents start o� by not cooperating, then the tit-for-tat strat-egy will never produce cooperative action.Symmetrical interactions: Axelrod assumes that everyinteraction is perfectly symmetrical. This implies that if twoagents cooperate in any interaction, both incur the same costand bene�t. In real-life interactions, more often than not inany one interaction one agent incurs the cost and the otherincurs the bene�t.Repetition of identical scenarios: Axelrod assumes agame-playing framework with continually recurring situa-tions. In real-life, however, more often than not, either theparties involved or the environmental conditions, are di�er-ent.Lack of a measure of work: Real life scenarios presentdi�ering circumstances which need to be compared basedon some common metric. For example, consider a scenariowhere time is the cost metric of cooperation. Suppose thatA helped B by retrieving some information over the inter-net; this act of cooperation cost A 5 minutes. Now, assume

that A asks B to execute some programs that will cost B 2hours. Should B honor such a request? The simple tit-for-tat mechanism will suggest that B cooperates, but that maynot be the best choice. The point is that there is no mech-anism for comparing past favors and future expectations inthe tit-for-tat strategy. It was not designed for scenarios inwhich individual cooperation acts bene�ts one party whilethe other incurs a cost.Our proposal, then, is to use a probabilistic, rather thana deterministic reciprocity scheme, with the following prop-erties: (1) allow agents to initiate cooperative relationships(this implies that it should be able to handle asymmetricalinteractions), (2) use a mechanism to compare cooperationcosts, (3) allow agents to be inclined to help someone withwhom it has a favorable balance of help (have received morehelp than have o�ered help), (4) be able to 
exibly adjustinclination to cooperate based on current work-load (e.g.,more inclined to cooperate when less busy, etc.).3 Probabilistic reciprocityWe assume a multiagent system with N agents. Each agentis assigned to carry out T tasks. The jth task assigned tothe ith agent is tij , and if agent k carried out this task inde-pendently of other tasks, the cost incurred is Ckij . However,if agent k carried out this task together with its own task tkl,the cost incurred for task tij is Cklij . Also, the cost incurredby agent k to carry out its own task tkl while carrying outtask tij for agent i is Ckijkl . In this paper, we allow an agentto carry out a task for another agent only in conjunctionwith another of its own tasks.If an agent, k, can carry out the task of another agent,i, with a lower cost than the cost incurred by the agent whohas been assigned that task (Ciij > Cklij ), the �rst agent cancooperate with the second agent by carrying out this task.If agent k decides to help agent i, then it incurs an extra costof Cklij but agent i saves a cost of Ciij . The obvious questionis why should one agent incur any extra cost for anotheragent. If we consider only one such decision, cooperationmakes little sense. If, however, we look at a collection ofsuch decisions, then reciprocal cooperation makes perfectsense.We now propose a probabilistic decision mechanism thatsatis�es the set of criteria for choosing when to honor arequest for help that we described at the end of the pre-vious section. We will de�ne Sik and Wik as respectivelythe savings obtained from and extra cost incurred by agenti from agent k over all of their previous exchanges. Also,let Bik = Sik � Wik be the balance of these exchanges(Bik = �Bki). We now present the probability that agentk will carry out task tij for agent i while it is carrying outits task tkl. This probability is calculated as:Pr(i; k; j; l) = 11 + expCklij���Ckavg�Bki� ; (1)where Ckavg is the average cost of tasks performed by agent k,and � and � are constants. This gives a sigmoidal probabil-ity distribution in which the probability of helping increasesas the balance increase and is more for less costly tasks. Weinclude the Cavg term because while calculating the prob-ability of helping, relative cost should be more importantthan absolute cost.We present a sample probability distribution in Figure 1.The constant � can be used to move the probability curve
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Figure 1: Probability distribution for accepting request for cooperation.left (more inclined to cooperate) or right (less inclined tocooperate). At the onset of the experiments Bki is 0 forall i and k. At this point there is a 0.5 probability that anagent will help another agent by incurring an extra cost of��Ckavg. The constant � can be used to control the steepnessof the curve. For a very steep curve approximating a stepfunction, an agent will almost always accept cooperation re-quests with extra cost less than � � Ckavg, but will rarelyaccept cooperation requests with an extra cost greater thanthat value. Similar analyses of the e�ects of � and � can bemade for any cooperation decision after agents have experi-enced a number of exchanges. In essence, � and � can beused to choose a cooperation level [6] for the agents at theonset of the experiments. The level of cooperation or theinclination to help another agent dynamically changes withproblem solving experience.4 Experimental resultsIn the simple package delivery problem that we have used,we assume N agents, each of which is assigned to deliver Tpackets. All the packets are located in a centralized depot.The packet destinations are located on one of F di�erentradial �ns, and at a distance between 1 and D from thedepot. Agents can only move towards or away from thedepot following one of the �ns; they cannot move directlybetween �ns. On arriving at the depot, an agent is assignedthe next packet it is to deliver. At this point, it checks ifany other agents are currently located in the depot. If so, itcan ask those agents to deliver this packet.The cost of an agent to deliver one of its packets individ-ually is double the distance of the delivery point from thedepot. If it carries another package to help another agent,it incurs one unit of extra cost per unit distance traveledwhen it is carrying its own packet and this extra packet.In addition, if it is overshooting its own destination to helpthe other agent, an additional cost measured as double thedistance between the destination of its packet and the des-tination of the other agent's packet is incurred.We vary the number of agents and the number of packets

to be delivered by each agent to evaluate the e�ects of dif-ferent environmental conditions. The other parameters areas follows: F = 4, D = 3, � = 0:75, and � = 0:5. Each ofour experiments is run on 10 di�erent randomly generateddata sets, where a data set consist of an ordered assignmentof package deliveries to agents. All the agents are assignedthe same number of deliveries. The evaluation metric is theaverage cost incurred by the agents to complete all the de-liveries.We experimented with the following types of agents:Philanthropic agents: Agents who will always accept arequest for cooperation. Philanthropic agents will producethe best global system performance. To ensure this, we al-low only bene�cial cooperation between these agents.Sel�sh agents: Agents who request for cooperation butnever accept a cooperation request.Reciprocative agents(R): Agents that follow our pre-scribed strategy of using the balance of cost and savingsto stochastically decide whether to accept a given requestfor cooperation.Underestimating R agents(UR): R agents who under-estimate the help received.Overestimating R agents(OR): R agents who overesti-mate the help received.OUR agents: Agents who at times underestimate and atother times overestimate the help received from others.Individual agents: Agents who neither receive nor givehelp to others.We expect the individual and the philanthropic agentsto provide the two extremes of system performance. The in-dividual agents should travel on the average the longest dis-tance to complete their deliveries (because no one is helpingthem), whereas the philanthropic agents should travel theleast. We expect the basic reciprocative agents (referred toas R agents henceforth) behaviors to lie in between. Thefrequency of occurrence of cooperation possibilities shoulddetermine which of the two ends of the spectrum is occupiedby the reciprocative agents. We expect that the underesti-mating reciprocative agents (UR) are going to su�er com-pared to R agents as they are going to return smaller favors
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Figure 2: Average distance traversed by each agent to complete all deliveries. Left �gure shows the scenario with therestriction of bene�cial cooperation and the right one is without the restriction, where R=reciprocative,UR=underestimatingreciprocative,OR=overestimating reciprocative and OUR =overestimating and underestimating reciprocative agentsthan those received. The overestimating agents (OR) re-turn more favors than received and should perform betweenthe philanthropic and the R agents. We expect the behav-ior of both over and under-estimating reciprocative (OUR)agents to be close to the reciprocative behavior. Under-estimation and overestimation is simulated by subtractingfrom and adding to, respectively, the actual cost incurredby the helper agent a Gaussian random number generatedwith mean � and standard deviation �.A critical issue to be investigated empirically whethersel�sh agents can pro�t at the expense of reciprocative agents.It would seem that reciprocative agents should perform bet-ter because with su�cient interactions they become philan-thropic towards each other, a possibility denied to the sel�shagents.For the �rst set of experiments we chose the number ofagents, N , as 100 and varied the number of deliveries peragent from 500 to 3000 in increments of 500. Di�erent exper-iments were performed on homogeneous sets of individual,R, UR, OR, OUR and philanthropic agents. Results fromthese set of experiments are presented in Figure 2. As ex-pected, the performance of the individual agents were theworst, and the philanthropic agents were the best. The in-teresting observation is that the performance of the recip-rocative agent is almost identical to that of philanthropicagents. That is, when a reciprocative agent is placed ina group of other reciprocative agents it adapts over timeto behave like a philanthropic agent, and this adaptationbene�ts everybody. This is a signi�cant result because wehave been able to show that under proper environmentalconditions (frequent interactions with possibilities of coop-eration), self-motivated behavior based on reciprocity canproduce mutually cooperative behavior that leads to near-optimal system performance. The UR agents perform sig-ni�cantly worse compared to R agents, but are still muchbetter o� compared to individual agents. The performanceof OR and OUR agents are statistically identical to that ofR agents. This is because the performance of R agents arealready approximately optimal.In the second set of experiments we allow non-bene�cialcooperation which implies that here agents can ask agentsfor help irrespective of which �n they plan to travel to. In

such cases, cooperation will not always produce a net savingto the system, e.g., agent A delivering a packet for agent Bto �n 1 when its own packet has to be delivered to �n 2.When non-bene�cial cooperation possibilities are allowed inconjunction with misconception, problems are exacerbated.From Figure 2 we notice that the UR agents are the mosta�ected ones! We also observe that the R, OR, OUR agentsperform worse when non-bene�cial cooperation is allowedcompared to the case where only bene�cial cooperation isutilized.The next set of experiments were designed to evaluatethe stability of reciprocative strategies by introducing self-ish agents in an otherwise homogeneous group of reciproca-tive agents. We expected that sel�sh agents should be ableto obtain some help from reciprocative agents. Hence theywould perform better than individual agents, but may notbe able to match the performance of reciprocative agents.We �xed the number of agents at 100 and the number of de-liveries at 1000. We varied the percentage of sel�sh agentsin the group. Results are presented in Figure 3. Our intu-itions regarding the relative performance of the agents arecorroborated by the �gure. The average performance of thegroup, lies in between the performance of the sel�sh and re-ciprocative agents, and moves closer to the performance ofthe sel�sh agent as the percentage of the latter is increased.Since reciprocative agents incur extra cost for sel�sh agentswithout being reciprocated, their performance is noticeablyworse than the baseline performance of the homogeneousphilanthropic agents. Moreover we found that the use ofreciprocity allows the reciprocative agents to adopt their be-havior such that after su�cient number of interactions theylearn to reject requests for help from the sel�sh agents, whileat the same time acting \philanthropically" towards otherreciprocative agents.When we evaluate the UR, OR, and OUR agents for sta-bility by including sel�sh agents in the group, we �nd thatthese agents still perform much better than sel�sh agents(see Figure 3). This is a heartening result. It means thateven though misconception will lower system performancecompared to the case where agents have accurate cost infor-mation, they can still adapt to behave \philanthropically"with similar-minded agents and learn to shun sel�sh agents
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Figure 3: Average distance traversed by each agent to com-plete all deliveries as the percentage of sel�sh agent in agroup of reciprocative agents is varied. The individualand the philanthropic agent results do not contain sel�shagents and are presented for comparison. R=reciprocative,UR=underestimating reciprocative agents

i.e. our reciprocative strategy is stable even in the presenceof misconception.5 ConclusionsIn our previous work, we have shown that self-motivated be-havior can evolve cooperation among a group of autonomousagents leading to near-optimal local and system performance [12].In this paper, we have relaxed restrictive assumptions of ac-curate cost estimation and bene�cial cooperation betweenreciprocative agents. Performance is again close to optimalwith both over and under-estimation of the amount of helpreceived by an agent. System performance gracefully de-grades, however, when agents underestimate the help theyreceive or when non-bene�cial cooperation is allowed. Avery important result is that the reciprocative strategy isstill stable against invasion by sel�sh agents.Currently, an agent receives help from the �rst person(from an ordered list) that agrees to help. We plan to studythe performance of the mechanism when the agent consid-ers all the o�ers for help and chooses to take help from theagent with which its got the most negative balance. We alsoplan to investigate more complex and realistic domains suchas distributed monitoring, distributed information gather-ing, etc. to further evaluate the strengths and limitationsof our proposed mechanism. We also want to perform adetailed analysis of how system performance is expected todegrade with the amount and frequency of misconceptionsand we plan to present theoretical predictions and experi-mental veri�cations from this analysis.Acknowledgments: This work has been supported, in part, byNSF grants IRI-9410180 and IRI-9702672.References[1] RobertAxelrod. The Evolution of Cooperation. Basic Books,1984.[2] R. Boyd. Is the repeated prisoner's dilemma a good modelof reciprocal altruism? Ethol. Sociobiology, 9:211{222, 1988.[3] Amedeo Cesta and Maria Miceli. Help under risky condi-tions: Robustness of the social attitude and system perfor-mance. In Proceedings of the Second International Confer-ence on Multiagent Systems, pages 18{25, Menlo Park, CA,1996. AAAI Press.[4] L.A. Dugatkin, D.S. Wilson, L. Farrand III, and R.T.Wilkens. Altruism tit for tat and `outlaw' genes. Evolu-tionary Ecology, 8:431{437, 1994.[5] Les Gasser. Social conceptionsof knowledge and action: DAIfoundations and open systems semantics. Arti�cial Intelli-gence, 47(1-3):107{138, 1991.[6] Claudia Goldman and Je�rey S. Rosenschein. Emergentcoordination through the use of cooperative state-changingrules. In Proceedings of the Twelfth National Conference onArti�cial Intelligence, pages 408{413, 1994.[7] D.L. Krebs. Altruism { an examination of the concept anda review of the literature. Psychological Bulletin, 73(4):258{302, 1970.[8] S. Nee. Does hamilton's rule describe the evolution of recip-rocal altruism? Journal of Theoretical Biology, 141:81{91,1989.[9] M.A. Nowak, R.M. May, and K. Sigmund. The arithmetics ofmutual help. Scienti�c American, 272(6):76{81, June 1995.[10] A. Rapoport. Prisoner's dilemma. In J. Eatwell, M. Milgate,and P. Newman, editors, The New Palgrave: Game Theory,pages 199{204. Macmillan, London, 1989.
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