Effects of misconception on reciprocative agents
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Abstract

In open systems, agents act to serve their self-interests in-
stead of working towards group goals. We investigate the
choice of interaction strategies and environmental charac-
teristics that will make the best self-interested actions to be
cooperative in nature. In our previous work, we have pre-
sented a probabilistic reciprocity mechanism that produces
stable, cooperative behavior among a group of self-interested
agents. The resultant system was found to exhibit close to
optimal throughput with a fair distribution of the workload
among the participating agents. In this paper, we test the
robustness of this scheme by changing some of the assump-
tions used before. In particular, we evaluate the perfor-
mance of reciprocative agents when an agent receiving help
from another agent underestimates the cost incurred by the
helping agent. This kind of misconceptions can derail coop-
erative processes leading to disintegration of stable groups.
Results from experiments with several kinds of misconcep-
tions, however, testify to the robustness of the reciprocative
strategy.

1 Introduction

Researchers involved in the design of intelligent agents that
will interact with other agents in an open, distributed sys-
tem are faced with the challenge of modeling other agents
and their behavior [5]. If one can can assume that all agents
will be cooperative in nature, efficient mechanisms can be
developed to take advantage of mutual cooperation. But, in
an open system, assumptions about cooperative agents or
system-wide common goals are hard to justify. More often,
we will find different agents have different goals and motiva-
tions and no real inclination to help another agent achieve
its objectives.

We assume agents to be self-motivated in their inter-
actions with other agents, and that interacting agents are
uniquely identifiable. An agent may help others in perform-
ing tasks. We develop a criteria for an agent to decide to
help or not to help another agent when the latter requests
for help. The decision criteria should be such that it al-

lows an agent to perform effectively in the long run. This
means that to be effective, an agent must be able to adapt
its behavior depending on the behavior of other agents in
the environment.

In our previous work, we have presented a simple de-
cision mechanism using the principle of reciprocity, which
suggests that agents help others who have helped them in
the past or can help them in the future. By using a multia-
gent domain where agents can exchange their tasks, we have
shown that agents can use the principle of reciprocity to ef-
fectively adapt to the environment, optimizing local perfor-
mance [12]. We developed a probabilistic reciprocity mech-
anism that was found to be stable against invasion by selfish
agents (agents who received help but never helped others).

There were two underlying assumptions in the paper

mentioned above which cast some doubts about the pos-
sibility of practical application of our proposed strategy:
Accurate cost information: When an agent A incurs a
cost ¢ to help agent B and saves the latter an amount s, we
say agents have accurate cost information if the values ¢ and
s are known to both of them. If agent B has only an esti-
mate, ¢ of ¢, we say B is underestimating or over-estimating
the cost incurred by A if ¢< ¢ or ¢> ¢ respectively. Under-
estimation is a common group malady and can jeopardize
agent relationships or destabilize working partnerships. We
investigate the effects of over and under-estimation of help
costs by reciprocative agents. Such evaluation involves both
performance of homogeneous groups, as well as testing the
stability of the reciprocative strategy in the presence of self-
ish agents.
Beneficial cooperation: This assumption states that an
agent asks help from another agent to achieve a task only
if the cost incurred by the helping agent will be less than
the savings obtained by the asking agent. This means that
for each instance of cooperation (one agent helping another)
there is a net savings in the cost incurred in the system. In
real life, if I believe someone else owe me a favor, I can ask
that person to complete one of my tasks, even if the cost
incurred by that person to complete the task may be more
than what it would have cost me to complete that task. This
would be an example of what we call a non-beneficial coop-
eration (from the system point of view, as the recipient of
help always benefits). In this paper, we study the perfor-
mance of our reciprocity mechanism when both beneficial
and non-beneficial cooperations are allowed. The latter is
expected to erase some of the benefits of beneficial cooper-
ation, but which of the two forms of cooperation dominate
is an open question in general.



2 Reciprocity as an adaptive mechanism

The evolution of cooperative behavior among a group of
self-interested agents have received considerable attention
among researchers in the social sciences and economics com-
munity. Researchers in the social sciences have focused on
the nature of altruism and the cause for its evolution and
sustenance in groups of animals [7, 11, 13]. Mathematical
biologist and economists have tried to explain the rational-
ity of altruistic behavior in groups of self-interested agents
by proposing various fitness models that analyze the success
of altruistic individuals and more importantly the evolution
of genetic traits supporting altruistic behavior [4, 8, 9]. Our
goal in this paper is not to model altruistic behavior in an-
imals; so we do not address the issues raised in the social
science literature on this topic. Our purpose is to propose
mechanisms by which cooperation can be encouraged and
established in groups of self-interested agents. Other re-
searchers in multiagent systems are beginning to evaluate
the effects of mutual help for survival [3]. Most of the work
by mathematical biologists or economists on the evolution
of altruistic behavior deals with the idealized problem called
Prisoner’s dilemma [10] or some other repetitive, symmet-
rical, and identical ‘games’. Some objections have already
been raised to using such sanitized, abstract games for un-
derstanding the evolution of complex phenomena like recip-
rocal altruism [2].

In a seminal piece of work Robert Axelrod has shown
how stable cooperative behavior can arise in self-interested
agents when they adopt a reciprocative attitude towards
each other [1]. Axelrod shows that a simple, deterministic
reciprocal scheme of cooperating with another agent who
has cooperated in the previous interaction, is quite robust
and efficient in maximizing local utility. Two properties of
this tit-for-tat strategy deserve special mention: (a) if all
agents use this strategy, system performance is optimal, (b)
it is stable against invasion by agents using other strategies
(i.e., if an agent using another strategy is introduced into a
group of tit-for-tat agents, the former cannot obtain greater
utility than that obtained by tit-for-tat agents). Though
Axelrod’s work is interesting and convincing, we have ar-
gued [12] that the assumptions used in his work makes the
results inapplicable in a number of practical domains. Some
of the problematic assumptions are:

Initial decision:

Axelrod assumes that such agents start of cooperating; if
agents start off by not cooperating, then the tit-for-tat strat-
egy will never produce cooperative action.

Symmetrical interactions: Axelrod assumes that every
interaction is perfectly symmetrical. This implies that if two
agents cooperate in any interaction, both incur the same cost
and benefit. In real-life interactions, more often than not in
any one interaction one agent incurs the cost and the other
incurs the benefit.

Repetition of identical scenarios: Axelrod assumes a
game-playing framework with continually recurring situa-
tions. In real-life, however, more often than not, either the
parties involved or the environmental conditions, are differ-
ent.

Lack of a measure of work: Real life scenarios present
differing circumstances which need to be compared based
on some common metric. For example, consider a scenario
where time is the cost metric of cooperation. Suppose that
A helped B by retrieving some information over the inter-
net; this act of cooperation cost A 5 minutes. Now, assume

that A asks B to execute some programs that will cost B 2
hours. Should B honor such a request? The simple tit-for-
tat mechanism will suggest that B cooperates, but that may
not be the best choice. The point is that there is no mech-
anism for comparing past favors and future expectations in
the tit-for-tat strategy. It was not designed for scenarios in
which individual cooperation acts benefits one party while
the other incurs a cost.

Our proposal, then, is to use a probabilistic, rather than
a deterministic reciprocity scheme, with the following prop-
erties: (1) allow agents to initiate cooperative relationships
(this implies that it should be able to handle asymmetrical
interactions), (2) use a mechanism to compare cooperation
costs, (3) allow agents to be inclined to help someone with
whom it has a favorable balance of help (have received more
help than have offered help), (4) be able to flexibly adjust
inclination to cooperate based on current work-load (e.g.,
more inclined to cooperate when less busy, etc.).

3 Probabilistic reciprocity

We assume a multiagent system with N agents. Each agent
is assigned to carry out T' tasks. The jth task assigned to
the tth agent is ¢;;, and if agent &k carried out this task inde-
pendently of other tasks, the cost incurred is ij. However,
if agent k carried out this task together with its own task ¢z,
the cost incurred for task ¢;; is ijl. Also, the cost incurred
by agent k to carry out its own task ty; while carrying out
task t;; for agent 1 is Cfl”. In this paper, we allow an agent
to carry out a task for another agent only in conjunction
with another of its own tasks.

If an agent, k, can carry out the task of another agent,
t, with a lower cost than the cost incurred by the agent who
has been assigned that task (C}; > C%), the first agent can
cooperate with the second agent by carrying out this task.
If agent k decides to help agent ¢, then it incurs an extra cost
of ijl but agent ¢ saves a cost of C};. The obvious question
is why should one agent incur any extra cost for another
agent. If we consider only one such decision, cooperation
makes little sense. If, however, we look at a collection of
such decisions, then reciprocal cooperation makes perfect
sense.

We now propose a probabilistic decision mechanism that
satisfies the set of criteria for choosing when to honor a
request for help that we described at the end of the pre-
vious section. We will define S;; and Wi as respectively
the savings obtained from and extra cost incurred by agent
1 from agent k over all of their previous exchanges. Also,
let B;x = Six — Wi be the balance of these exchanges
(Bir = —Bri). We now present the probability that agent
k will carry out task ¢;; for agent ¢ while it is carrying out
its task tr;. This probability is calculated as:

1
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Pr(ik, j,1) =

where Cf;vg is the average cost of tasks performed by agent k&,
and 3 and 7 are constants. This gives a sigmoidal probabil-
ity distribution in which the probability of helping increases
as the balance increase and is more for less costly tasks. We
include the Cuyg term because while calculating the prob-
ability of helping, relative cost should be more important
than absolute cost.

We present a sample probability distribution in Figure 1.
The constant 3 can be used to move the probability curve



0.9

0.7 -
0.6 -

04 -
0.3 -

Probability of helping

0.1 -

(1.0/ (1.0 + (exp ((x - 2.0) / 0.75)))) ——

2

3 4 5
Extra cost

Figure 1: Probability distribution for accepting request for cooperation.

left (more inclined to cooperate) or right (less inclined to
cooperate). At the onset of the experiments By; is 0 for
all ¢+ and k. At this point there is a 0.5 probability that an
agent will help another agent by incurring an extra cost of
ﬁ*Cf;vg. The constant 7 can be used to control the steepness
of the curve. For a very steep curve approximating a step
function, an agent will almost always accept cooperation re-
quests with extra cost less than 3 * Cf;vg, but will rarely
accept cooperation requests with an extra cost greater than
that value. Similar analyses of the effects of 3 and T can be
made for any cooperation decision after agents have experi-
enced a number of exchanges. In essence, 3 and 7 can be
used to choose a cooperation level [6] for the agents at the
onset of the experiments. The level of cooperation or the
inclination to help another agent dynamically changes with
problem solving experience.

4 Experimental results

In the simple package delivery problem that we have used,
we assume N agents, each of which is assigned to deliver T’
packets. All the packets are located in a centralized depot.
The packet destinations are located on one of F' different
radial fins, and at a distance between 1 and I from the
depot. Agents can only move towards or away from the
depot following one of the fins; they cannot move directly
between fins. On arriving at the depot, an agent is assigned
the next packet it is to deliver. At this point, it checks if
any other agents are currently located in the depot. If so, it
can ask those agents to deliver this packet.

The cost of an agent to deliver one of its packets individ-
ually is double the distance of the delivery point from the
depot. If it carries another package to help another agent,
it incurs one unit of extra cost per unit distance traveled
when it is carrying its own packet and this extra packet.
In addition, if it is overshooting its own destination to help
the other agent, an additional cost measured as double the
distance between the destination of its packet and the des-
tination of the other agent’s packet is incurred.

We vary the number of agents and the number of packets

to be delivered by each agent to evaluate the effects of dif-
ferent environmental conditions. The other parameters are
as follows: F'=4, D =3, 7 = 0.75, and 8 = 0.5. Each of
our experiments is run on 10 different randomly generated
data sets, where a data set consist of an ordered assignment
of package deliveries to agents. All the agents are assigned
the same number of deliveries. The evaluation metric is the
average cost incurred by the agents to complete all the de-
liveries.

We experimented with the following types of agents:
Philanthropic agents: Agents who will always accept a
request for cooperation. Philanthropic agents will produce
the best global system performance. To ensure this, we al-
low only beneficial cooperation between these agents.
Selfish agents: Agents who request for cooperation but
never accept a cooperation request.

Reciprocative agents(R): Agents that follow our pre-
scribed strategy of using the balance of cost and savings
to stochastically decide whether to accept a given request
for cooperation.

Underestimating R agents(UR): R agents who under-
estimate the help received.

Overestimating R agents(OR): R agents who overesti-
mate the help received.

OUR agents: Agents who at times underestimate and at
other times overestimate the help received from others.
Individual agents: Agents who neither receive nor give
help to others.

We expect the individual and the philanthropic agents
to provide the two extremes of system performance. The in-
dividual agents should travel on the average the longest dis-
tance to complete their deliveries (because no one is helping
them), whereas the philanthropic agents should travel the
least. We expect the basic reciprocative agents (referred to
as R agents henceforth) behaviors to lie in between. The
frequency of occurrence of cooperation possibilities should
determine which of the two ends of the spectrum is occupied
by the reciprocative agents. We expect that the underesti-
mating reciprocative agents (UR) are going to suffer com-
pared to R agents as they are going to return smaller favors
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Figure 2: Average distance traversed by each agent to complete all deliveries.

avg distance travelled

T T T T
OUR —-—
12000 individual -+-- B
philanthropic -&--

OR -x

UR -~
10000 - R =& 3
8000 -
6000 -
4000 -
2000 -

2500

Left figure shows the scenario with the

restriction of beneficial cooperation and the right one is without the restriction, where R=reciprocative,UR=underestimating
reciprocative,OR=overestimating reciprocative and OUR =overestimating and underestimating reciprocative agents

than those received. The overestimating agents (OR) re-
turn more favors than received and should perform between
the philanthropic and the R agents. We expect the behav-
ior of both over and under-estimating reciprocative (OUR)
agents to be close to the reciprocative behavior. Under-
estimation and overestimation is simulated by subtracting
from and adding to, respectively, the actual cost incurred
by the helper agent a Gaussian random number generated
with mean p and standard deviation o.

A critical issue to be investigated empirically whether

selfish agents can profit at the expense of reciprocative agents.

It would seem that reciprocative agents should perform bet-
ter because with sufficient interactions they become philan-
thropic towards each other, a possibility denied to the selfish
agents.

For the first set of experiments we chose the number of
agents, N, as 100 and varied the number of deliveries per
agent from 500 to 3000 in increments of 500. Different exper-
iments were performed on homogeneous sets of individual,
R, UR, OR, OUR and philanthropic agents. Results from
these set of experiments are presented in Figure 2. As ex-
pected, the performance of the individual agents were the
worst, and the philanthropic agents were the best. The in-
teresting observation is that the performance of the recip-
rocative agent is almost identical to that of philanthropic
agents. That is, when a reciprocative agent is placed in
a group of other reciprocative agents it adapts over time
to behave like a philanthropic agent, and this adaptation
benefits everybody. This is a significant result because we
have been able to show that under proper environmental
conditions (frequent interactions with possibilities of coop-
eration), self-motivated behavior based on reciprocity can
produce mutually cooperative behavior that leads to near-
optimal system performance. The UR agents perform sig-
nificantly worse compared to R agents, but are still much
better off compared to individual agents. The performance
of OR and OUR agents are statistically identical to that of
R agents. This is because the performance of R agents are
already approximately optimal.

In the second set of experiments we allow non-beneficial
cooperation which implies that here agents can ask agents
for help irrespective of which fin they plan to travel to. In

such cases, cooperation will not always produce a net saving
to the system, e.g., agent A delivering a packet for agent B
to fin 1 when its own packet has to be delivered to fin 2.
When non-beneficial cooperation possibilities are allowed in
conjunction with misconception, problems are exacerbated.
From Figure 2 we notice that the UR agents are the most
affected ones! We also observe that the R, OR, OUR agents
perform worse when non-beneficial cooperation is allowed
compared to the case where only beneficial cooperation is
utilized.

The next set of experiments were designed to evaluate
the stability of reciprocative strategies by introducing self-
ish agents in an otherwise homogeneous group of reciproca-
tive agents. We expected that selfish agents should be able
to obtain some help from reciprocative agents. Hence they
would perform better than individual agents, but may not
be able to match the performance of reciprocative agents.
We fixed the number of agents at 100 and the number of de-
liveries at 1000. We varied the percentage of selfish agents
in the group. Results are presented in Figure 3. Our intu-
itions regarding the relative performance of the agents are
corroborated by the figure. The average performance of the
group, lies in between the performance of the selfish and re-
ciprocative agents, and moves closer to the performance of
the selfish agent as the percentage of the latter is increased.
Since reciprocative agents incur extra cost for selfish agents
without being reciprocated, their performance is noticeably
worse than the baseline performance of the homogeneous
philanthropic agents. Moreover we found that the use of
reciprocity allows the reciprocative agents to adopt their be-
havior such that after sufficient number of interactions they
learn to reject requests for help from the selfish agents, while
at the same time acting “philanthropically” towards other
reciprocative agents.

When we evaluate the UR, OR, and OUR agents for sta-
bility by including selfish agents in the group, we find that
these agents still perform much better than selfish agents
(see Figure 3). This is a heartening result. It means that
even though misconception will lower system performance
compared to the case where agents have accurate cost infor-
mation, they can still adapt to behave “philanthropically”
with similar-minded agents and learn to shun selfish agents
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Figure 3: Average distance traversed by each agent to com-
plete all deliveries as the percentage of selfish agent in a
group of reciprocative agents is varied. The individual
and the philanthropic agent results do not contain selfish
agents and are presented for comparison. R=reciprocative,
UR=underestimating reciprocative agents

i.e. our reciprocative strategy is stable even in the presence
of misconception.

5 Conclusions

In our previous work, we have shown that self-motivated be-
havior can evolve cooperation among a group of autonomous
agents leading to near-optimal local and system performance
In this paper, we have relaxed restrictive assumptions of ac-
curate cost estimation and beneficial cooperation between
reciprocative agents. Performance is again close to optimal
with both over and under-estimation of the amount of help
received by an agent. System performance gracefully de-
grades, however, when agents underestimate the help they
receive or when non-beneficial cooperation is allowed. A
very important result is that the reciprocative strategy is
still stable against invasion by selfish agents.

Currently, an agent receives help from the first person
(from an ordered list) that agrees to help. We plan to study
the performance of the mechanism when the agent consid-
ers all the offers for help and chooses to take help from the
agent with which its got the most negative balance. We also
plan to investigate more complex and realistic domains such
as distributed monitoring, distributed information gather-
ing, etc. to further evaluate the strengths and limitations
of our proposed mechanism. We also want to perform a
detailed analysis of how system performance is expected to
degrade with the amount and frequency of misconceptions
and we plan to present theoretical predictions and experi-
mental verifications from this analysis.
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