Using Learned Data Patterns to
Detect Malicious Nodes in Sensor Networks

Partha Mukherjee and Sandip Sen

Department of Mathematical and Computer Science
University of Tulsa
{partha-mukherjee,sandip}@utulsa.edu

Abstract. As sensor network applications often involve remote, dis-
tributed monitoring of inaccessible and hostile locations, they are vul-
nerable to both physical and electronic security breaches. The sensor
nodes, once compromised, can send erroneous data to the base station,
thereby possibly compromising network effectiveness. We consider sen-
sor nodes organized in a hierarchy where the non-leaf nodes serve as
the aggregators of the data values sensed at the leaf level and the Base
Station corresponds to the root node of the hierarchy. To detect com-
promised nodes, we use neural network based learning techniques where
the nets are used to predict the sensed data at any node given the data
reported by its neighbors in the hierarchy. The differences between the
predicted and the reported values is used to update the reputation of
any given node. We compare a Q-learning schemes with the Beta rep-
utation management approach for their responsiveness to compromised
nodes. We evaluate the robustness of our detection schemes by varying
the members of compromised nodes, patterns in sensed data, etc.

1 Introduction

Sensors in wireless sensor networks are used to cooperatively monitor physical
and environmental conditions specially in regions where human access is limited.
Current research on sensor networks propose data aggregation protocol where the
sensor nodes reside at the leaf level and the non-leaf nodes act as the aggregator
nodes. If a large number of nodes become damaged or compromised, the entire
data gathering process may be jeopardized. Hence, the detection of faulty nodes
and protecting the security and integrity of the data is a key research challenge.

In our work, the sensor nodes are assumed to be deployed in a terrain where
the data being sensed follows a time varying pattern over the entire sensed
area. In such scenarios standard outlier detection mechanisms will fail as the
data values sensed may vary widely over the sensor field. We propose a neural
net learning based technique where regional patterns in the sensor field can
be learned offline from sufficient number of observations and thereafter used
online to predict and monitor data reported by a node from data reported by
neighboring nodes.

We assume that the nodes and the network will function without error for
an initial period of time after deployment (provides data for offline training of

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 339-[344] 2008.
© Springer-Verlag Berlin Heidelberg 2008

340 P. Mukherjee and S. Sen

the net). Next the trained neural nets are used online to predict the output
of the nodes given the reported values of the neighboring sensors. The differ-
ence between the predicted and reported values is used to measure error. Such
errors are used by a couple of incremental reputation update mechanisms, Q-
learning and Beta reputation scheme,which take sequence of errors to decide if
a node is compromised or not. If the updated reputation falls below a specified
threshold, the node is reported to be faulty. We have successfully used these
reputation schemes to quickly detect erroneous nodes for different network sizes
and data patterns over the sensor field without any false positives and false
negatives.

2 Experimental Framework

We assume a sensor network with n nodes, where the nodes are distributed over
a region with (x;,y;) representing the physical location of the sensing node 4.
The n nodes are arranged in a tree hierarchy with the base station as the root
node. Each non-leaf node in the L-level] hierarchy aggregates data reported to
it by its k children and forwards it to its own parent in turn.

We model fluctuations of the sensed data in the environment by adding noise
to the function value f(x;,y;,t) for the i—th node at time interval ¢. So, the
sensed value at position (z,y) at time ¢ is given by f(z,y,t) = g(x,y) + h(t) +
N(0,0), where h maps a time to the range [I, h] and N (0, o) represents a 0 mean,
o standard deviation Gaussian noise. We have used two different g functions,
e~ @*+v*) and %Ly) and refer to these two environments as E1 and E2 respec-
tively. In our experiments, we assume that each sensor node adds a randomly
generated offset in the range [0, €] to the data value it senses and vary the number
of compromised nodes only at the leaf level,though our mechanism, is capable
of detecting faulty nodes at any position in the hierarchy except the root node,
assumed as base station. The initial error-free data reporting interval is assumed
to be D and the threshold for malicious node detection is taken as a fraction
p = 0.03 of the maximum reputation a sibling possesses at a particular iteration.
E stands for the entire data set including offline and online data.

2.1 Learning Technique

To form the predictor for a given node ¢ in the sensor network, we use a three-level
feed-forward neural network with k& — 1 nodes in the input layer which receives
data reported by the siblings of this node. Each such neural network has one
hidden layer with H nodes and the output layer has one node that corresponds to
the predicted value for this sensor node. A back-propagation training algorithm,
of learning rate n and momentum term - is used with sigmoid activation function

! The index of node i is calculated as index; = ¢ * k + 14, ¢ is the index of the parent
node and k is the number of its children. ¢ 0 < ¢ < [Z].

2 There are k'~* nodes in level [and n = Zszl k'™ where k¥~! leaf-level nodes are
sensing nodes.

Using Learned Data Patterns to Detect Malicious Nodes in Sensor Networks 341

fly) = H% for the neural network units. The outputs are restricted to the
[0, 1] range.

We experiment with two representative sensor networks, each organized in an
m-ary tree:

Network 1 (N1): The smaller network with m = 3 has a total of n = 40
nodes, of which 27 leaf level nodes sense data from the environment. The neu-
ral networks used for learning node predictors have the following parameters:
n=10,7v=0.7 H =6, D= 4500, and E = 5000. The output of each node is
predicted by taking inputs from two of its siblings. The prediction efficiencies of
the net for the functions e~@ +¥*) and w are 94.45% and 92.6% respectively.
We ran experiments with 3, 5 and 7 malicious nodes for this network.

Network 2 (N2): The larger network with m = 4 has a total of n = 85 nodes,
of which 64 leaf level nodes sense data from the environment. The neural net-
works used for learning node predictors have the following parameters: n = 0.8,
v=0.7,H =8,D = 4500, and E = 5000. The output of each node is predicted
by taking inputs from three of its siblings. In this case the prediction efficiencies
of the net for the functions e~(**+¥*) and %Ly) are 93.30% and 90.6% respec-
tively. We ran experiments with 5, 10, and 15 malicious nodes for this network.

Algorithm [is used online to update the reputation for each node ¢ at each
t_ |1 repOTtedf

[predicted? |’ where

data reporting time interval based on relative error

predicted! and reported! are the values predicted for and the actual output by
the node 4 at time ¢ respectively. From this relative error, an error statistic X!
= e~ Kxef] is computed for updating node reputation. Reputation updates are
performed by the Q-learning and Beta-reputation schemes. As performance met-
ric, we use the iterations taken by these mechanisms to detect the first and last
erroneous nodes. The latter value corresponds to the time taken to detect all

faulty nodes.

Q-Learning Framework: The reputation of every node i is updated as fol-
lows: ReputationtQLi — (1—a)x Reputationzﬁli + a* X! We use a learning rate,
«, of 0.2 and an initial reputation, ReputationOQLi =1,Vi.

RFSN Framework: In Reputation Based Framework for Sensor Networks

(RFSN) [1] framework the corresponding reputation update equation is given
vi+1
and non-cooperative responses received from node ¢ until time t. We assume
79 = Y = 0 and these values are subsequently updated as v} « v/~ + X! and

Bl =Bt + (1=,

by Reputationﬁf = where 7! and ! are the cumulative cooperative

3 We have used K = 10. The results are robust to K values of this order but too high
or too low K value would respectively be inflexible or will not sufficiently penalize
€rrors.

342 P. Mukherjee and S. Sen

Algorithm 1: DetectMalicious(n, N)

Data: The trained neural net N with set of given parameters, number of nodes n

Result: Detection of malicious nodes

initialization: ReputationT'hreshold = 0.03, Vi, Reputation%Li =1,

Reputation%i =0;

for t=0;;t++ do

for each sensor node node; do

Compute relative_error: ¢;

Compute error_statistic: f(g);

Update Reputation’éLi;

Update Reputationf;i;

if ReputationtQLi <

Reputation_Threshold * maxge Neigh; ReptutationtQLk then
node; is malicious according to Q-learning based reputation

mechanism;
end
if Reputationg, < Reputation_Threshold * maxieNeigh; Reptutationtﬁk
then
| mode; is malicious according Beta-Reputation mechanism;
end

end

end

The maximum value of detection with first distribution The minimum value of detection with first distribution

number of cycles
number of cycles
N
S

number of erroneous nodes

20

number of erroneous nodes

15

20

(a) Maximum time to detect malicious (b) Minimum time to detect malicious
nodes nodes

Fig. 1. Maximum and minimum number of cycles required to detect compromised
nodes by the Q-learning (QL) and RFSN (BR) approaches in environment E1 (n = 85)

for distribution e~ (®*+¥%)

2.2 Observations

We ran experiments with 10 random orderings of data reporting sequences and
average our results over these runs. Figures [I 2] show the average time taken
to detect the first and last malicious node taken by these reputation schemes
for the two problem sizes. We omit the figures for distribution zﬂ for both

T4y

the networks due to space constraints. The result for =5# corroborates the view

Using Learned Data Patterns to Detect Malicious Nodes in Sensor Networks 343

The maximum value of detection with first distribution The minimum value of detection with first distribution
65 T T T T 26

Max QL - Min QL -
60 Max BR 2 Min BR
55
o 50 ’ : W 22}
3 s
S]
g % & 20| 5
3w H
5]
K] 18
E 3 £
5 5
£ 30t 16
25
14
2 R B I &
15 = . . 12

0

S
IS
)
)
3
°
S
IS
)
®

10
number of erroneous nodes number of erroneous nodes

(a) Maximum time to detect malicious (b) Minimum time to detect malicious
nodes nodes

Fig. 2. Maximum and minimum number of cycles required to detect compromised
nodes by the Q-learning (QL) and RFSN (BR) approaches in environment E2 (n = 40)
for distribution e~ +¥*)

observed for e~ (@*+¥") The standard deviations of these metrics, centered around
the mean, are also shown. We highlight the following observations:

Observation 1: For both environments and problem sizes, the time taken to
detect the first malicious node is less for the Q_Learning based approach than
that of the RFSN based approach. This value remains between 12 to 15 iterations
irrespective of the environment and number of erroneous nodes in the network.
We have experimented with at most 15 and 7 faulty nodes respectively for the
85 and 40 node networks.

Observation 2: The plots show that the mean values of the time taken to detect
the last erroneous node is again significantly less for the Q_Learning based rep-
utation scheme compared to the RFSN based approach irrespective of network

size and the number of malicious nodes (see Figures[I{a)land [2(a)).

Observation 3: We did not observe any false positives (normal nodes identified
as malicious) or false negatives (undetected malicious nodes) in our experiments.
We conclude that for the class of environments that we have considered, the
Q-Learning scheme detects malicious nodes in the network more expediently
compared to the Beta-reputation approach. The significance of the past reputa-
tion values are exponentially discounted in the Q-Learning scheme whereas the
Beta-reputation scheme gives equal weight to early and recent experiences.

3 Related Work

Recent work on securing sensor networks use techniques like key establishment,
authentication, secure routing, etc. Symmetric key cryptography is preferred for
protecting confidentiality, integrity and availability [2/3]. Intrusion Tolerant se-
cure routing protocols in wireless Sensor Networks (INSENS) [4] tries to bypass
malicious nodes and nullifies the effect of compromised nodes in the vicinity of

344 P. Mukherjee and S. Sen

malicious nodes. Existing literature on intrusion detection mechanisms in sensor
networks use statistical approaches like outlier detection schemes, where data is
assumed to be sampled from the same distribution [5]. Such mechanisms, how-
ever, cannot be used when sensor fields span a wide area and can have significant
variation in the sensed data.Our proposed neural net based approach learns such
patterns from reported data and can be combined with reputation management
schemes to detect malicious nodes online.

4 Conclusion

For the environments, where standard outlier detection mechanisms are inef-
fective, we propose a combination of a neural network based offline learning
approach and online repuation update schemes to identify nodes reporting in-
consistent data. We experimentally evaluate our scheme for two different network
sizes and two different data patterns over the sensor field. Results show that our
approach is successful in identifying multiple colluding malicious nodes without
any false positives and false negatives. The approach scales well and is robust
against attacks even when as much as 25% of the sensor nodes are corrupted.
The Q-learning based approach is found to detect malicious nodes faster than
the Beta-repuation based scheme. In the future we plan to extend our work to
incorporate the analysis of more sophisticated collusion, and prevent malicious
nodes from using false identities to report spurious, multiple false data.

Acknowledgement. Research supported in part by a DOD-ARO Grant
#WOI11NF-05-1-0285.

References

1. Ganeriwal, S., Srivastava, M.B.: Reputation-based framework for high integrity sen-
sor networks. In: SASN 2004. Proceedings of the 2nd ACM workshop on Security
of ad hoc and sensor networks, pp. 66-77. ACM Press, New York (2004)

2. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor net-
works. In: Proceedings of the 9th ACM conference on Computer and communica-
tions security, pp. 41-47 (November 2002)

3. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security proto-
cols for sensor networks. Wirel. Netw. 8(5), 521-534 (2002)

4. Deng, J., Han, R., Mishra, S.: Insens: Intrusion-tolerant routing in wireless sensor
networks (2002)

5. Yang, Y., Wang, X., Zhu, S., Cao, G.: Sdap: A secure hop-by-hop data aggregation
protocol for sensor networks. In: MobiHoc 2006. Proceedings of the 7th international
symposium on Mobile ad hoc networking and computing, pp. 356-367. ACM Press,
New York (2006)

	Introduction
	Experimental Framework
	Learning Technique
	Observations

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

