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ABSTRACT

When studying stochastic multiagent system models, it is
currently most common to perform analysis using Monte
Carlo simulations. However, this approach can be prohibitively
expensive in certain settings. When system behavior is highly
variable, a large number of simulations is needed to under-
stand its behavior for even a single parameter configuration.
Simulation performance can also scale poorly with certain
parameter values, such as the number of agents and time
steps. Working over a parameter space increases costs even
further. We present an analytical approach to characteriz-
ing stochastic multiagent systems with (a) runtime indepen-
dent of system variability, logarithmic in the number of time
steps, and dependent on interaction size rather than popula-
tion size; and (b) hard, non-probabilistic, error bounds. This
method is applied in a sociodynamics setting, illustrating
how an analytical approach can produce exact predictions
quickly when a simulation approach could perform poorly.
We also demonstrate how to characterize behavior across
a parameter space and perform approximate inference and
optimization tasks when using this analytical approach.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

Keywords

Stochastic multiagent systems; opinion dynamics; analysis

1. INTRODUCTION
Stochastic multiagent systems represent the behavior of

populations of interacting agents, incorporating elements of
randomness and uncertainty. This class of systems is useful
for investigating phenomena in many fields, including social
sciences, economics, biology, and physics.

Familiar examples from multiagent system literature in-
clude models of opinion dynamics in human societies, which
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define rules for selection and effects of interaction between
individuals [15]. In particular, the Bounded Confidence model
is frequently referenced [2, 5]. Another commonly studied
stochastic MAS is policy evolution of players in a population
over time as they repeatedly interact in Prisoner’s Dilemma
settings [13]. Typically, this analysis relies on mean field
theory. However, this category includes systems from other
fields as well, such as population dynamics and predator-
prey models [4, 11], and electromagnetics [16].

1.1 Current simulation approaches
Existing studies tend to focus on empirical analysis, exam-

ining the behavior of a system by inspecting aggregate data
from a large number of simulations. This approach presents
a number of problems. The accuracy and reliability of the
predictions is often unknown; measures of uncertainty, such
as confidence intervals and probably-approximately-correct
bounds, are difficult to develop for complicated systems.
Even for simple systems, though, the number of samples
needed for a certain level of confidence increases exponen-
tially with the desired degree of accuracy. Characterizing
the behavior of a system across a range of parameter val-
ues increases the cost even further, making it difficult to
see trends in data, tune parameters to match real data, in-
fer details about unobserved quantities, or choose parameter
values to promote certain types of system behavior.

1.2 Current analytical approaches
Current analytical approaches, on the other hand, often

focus on studying a very small subclass of possible problems,
and are not usually applied to newly proposed stochastic
MAS models. The Kalman filter [1, 14], for example, is
well-studied, but focuses on a specific scenario of a Markov
process with a linear, deterministic state transition, an addi-
tive deterministic control component, and additive Gaussian
noise. Generalization is performed manually: for instance,
the extended Kalman filter [8] and unscented Kalman fil-
ter [10] have been developed separately to handle nonlinear
state transitions. However, these approaches do not handle
nondeterministic state transitions and other types of process
noise. Mean field analysis typically is even more focused on
specific tasks, such as prediction of phase transitions [7], be-
havior of electromagnetic systems, and specific formulations
of the Bounded Confidence model [3]. Often, results are pre-
sented in the form of limits as a population’s size approaches
infinity [6, 7, 9]. Other analytical approaches that are more
easily generalized, while still focusing on specific problem in-
stances, often neglect much of the variation between possible
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population configurations, resulting in suboptimal accuracy
and a lack of proven error bounds. An approach that is both
rigorous and fairly general would be preferred.

2. MOTIVATING EXAMPLE
Consider the following situation: a single agent flips an

unbiased coin exactly once. If the result is heads, then the
agent receives $1; otherwise, it receives nothing. Suppose
that we are interested in the expected monetary payoff of
the agent, as well as the variability in the payoff, as ex-
pressed by higher-order moments. Analytically, we can find
the moments immediately: the jth raw moment is

µ
′
j = (0.5)($1)j + (0.5)($0)j = 0.5 dollarj . (1)

However, finding just the mean payoff using simulations can
be inefficient.

The procedure for analyzing the accuracy and reliabil-
ity of the empirical approach very closely resembles that
used for constructing confidence intervals for the coin’s bias.
Let K be the number of heads obtained given nsims simu-
lated coin flips; K is drawn from the Bernoulli distribution
B(nsims, 0.5). The probability of obtaining k heads in a ran-
domly sampled nsims-simulation batch is

P (K = k) =

(

nsims

k

)

(0.5)k(1− 0.5)nsims−k (2)

=

(

nsims

k

)

(0.5)nsims , (3)

and that of observing a sample mean payoff within e dollars
of the true mean payoff, for 0 ≤ e ≤ 0.5, is

P (⌈(0.5− e)nsims⌉ ≤ K ≤ ⌊(0.5 − e)nsims⌋)

= (0.5)nsims

⌊(0.5−e)nsims⌋
∑

k=⌈(0.5−e)nsims⌉

(

nsims

k

)

. (4)

Applying this formula, we can find, for example, that the
probability that a random 1, 000-simulation batch will have
a sample mean between 0.49 and 0.51 (i.e., yield a rela-
tive error of 2% or less) is only about 49.3%. For large
n, we can approximate the sample mean’s distribution by
1
2
+ 1

2
√

nsims
Z, where Z ∼ N (0, 1). The probability that a

randomly generated sample mean is within e = z
2
√

nsims
of

the true mean p is approximated by Φ(z) − Φ(−z), where
Φ(·) is the cumulative distribution function of the standard
normal distribution. Thus, for a given level of confidence,
i.e., a fixed z value, the required number of simulations to

ensure an error bound of e is z2

4e2
. Figure 1 shows the number

of simulations required to build various confidence intervals
for the mean payoff for the approximate distribution (note
the logarithmic scale). To gain an order of magnitude in ac-
curacy, the sample size must increase by two orders of mag-
nitude. This is decidedly suboptimal, since the true mean
value can be instantly obtained from the description of the
problem. In more complicated scenarios, the accuracy and
reliability of simulations is usually not analyzed, which can
lead to problems such as

• overlooking low-probability events due to encountering
several outcomes with similar results, or
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Figure 1: Approximate number of simulations re-

quired to build various confidence intervals for the

mean payoff in the coin flip scenario

• unreliable predictions on some parameter configura-
tions, due to tuning the number of simulations to give
consistent results for another parameter configuration,
which happens to have more consistent behavior in
general.

3. BOUNDS ARITHMETIC
Rather than manually performing theoretical analysis on

every system of interest, it would be preferable to use an
automated framework. Since quantities with error bounds
may be introduced in several places throughout the analysis,
some basic operations must be redefined to work on sets of
possible values instead of just individual values. This section
discusses one possible choice for representing and working
with error bounds.

Suppose some quantity x lies on domain X; in general,
sets of valid values for x will lie on 2X . However, even for
discrete domains X, it can be infeasible to store and work
with these subsets directly; instead, some subset E ⊆ 2X

should be selected with elements that are easier to represent.
Then, for every basic function f : X → YX involving X, a
“superimage” g : E → YE of the function should be defined
with the following property:

x ∈ E =⇒ f(x) ∈ g(E), ∀x ∈ X, ∀E ∈ E . (5)

Note the one-sided implication; essentially, superimages of
an operation are allowed to decrease the specificity of an
answer, but not to increase it, as this could lead to incorrect
error bounds.

We discuss the specific case where X is an ordered field,1

and E is the set of intervals over X; extending this defi-
nition to handle vectors spaces over the reals is relatively
straightforward. Intervals can be straightforwardly repre-
sented as two endpoints from X, each tagged as open (ex-
clusive) or closed (inclusive). Addition is exactly what would
be expected: lower bounds are summed together, and upper

1Ordered fields, also known as formally real fields, are al-
gebraic structures formalizing certain properties about ad-
dition, negation, multiplication, inversion, and ordering of
numbers. One important instance of an ordered field is the
real numbers.
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bounds are summed together; the type of a bound is inclu-
sive iff both of the associated summands corresponded to
inclusive bounds. The symbols for common operations will
be overloaded to operate between element pairs of scalar,
bound, or mixed types. Here are some examples:

[a, b] + [c, d] := [a+ c, b+ d]; (6)

[a, b) + [c, d] := [a+ c, b+ d); (7)

(a, b] + [c, d) := (a+ c, b+ d); and (8)

(a, b) + (c, d) := (a+ c, b+ d). (9)

An interpretation of the second result is that, for any x ∈
[a, b) and y ∈ [c, d], it is guaranteed that (x + y) ∈ [a +
c, b+ d). Negation flips the sign and order of the bounds:

−[a, b] := [−b, −a]; (10)

−[a, b) := (−b, −a]; (11)

−(a, b] := [−b, −a); and (12)

−(a, b) := (−b, −a). (13)

Multiplication is more complicated than the previous op-
erations. Here is an example for closed intervals:2

[a, b] · [c, d] := [min{ac, ad, bc, bd},max{ac, ad, bc, bd}]. (14)

Bounds functions for other operations can be formed by
composing the above operations. However, the resulting
functions are not necessarily tight. For example, consider
the function f(x) = x−x. It is clear that, for all x, f(x) = 0,
and so the tightest bounds function g(E) is equal to {0} for
all E. Suppose that it is known that x ∈ [a, b]; the inter-
val subtraction operation defined using the above operations
produces the bounds [a, b] − [a, b] := [a − b, b − a], rather
than the optimal result [0, 0]. It is important to try to limit
the number and effects of these bounds-widening operations.

4. OPINION DYNAMICS MODEL
To illustrate the proposed analysis techniques, we will fo-

cus on the Bounded Confidence model of opinion dynamics
with a confidence interval width of ε = 1. In this model, an
agent i’s opinion Xt

i on some subject at time t is modeled
as a real number on the interval [0, 1]. Whenever two agents
i and j interact, their opinions become more similar:

X
t+1
i = X

t
i + µ(Xt

j −X
t
i ), X

t+1
j = X

t
j + µ(Xt

i −X
t
j). (15)

An individual’s opinion only changes through interaction
with others. We use the fairly common interaction scheme
in which two distinct agents, chosen randomly with uniform
probability from all possible pairs, interact at each time step
(with all others retaining their old opinions). Half of the na

agents in the society will be initialized with an opinion of
o ∈ [0, 1], and the others will start with an opinion of 0; it
is assumed that na is even.

Let Xt = (Xt
i )

na

i=1 be the vector of all agent opinions at
time t. Let

M′ t
j =

1

na

na
∑

i=1

(Xt
i )

j (16)

be the jth raw moment of opinions in a population at time
t; for example, M′ t

1 is the average opinion of the society at

2Intervals including open endpoints require some additional
checks to ensure that valid results are returned, but are oth-
erwise addressed in a similar manner.
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Figure 2: The agent opinions over time for one opin-

ion dynamics simulation run, na = 10, µ = 0.1, o = 1

time t. Usually, moments are simply constants; however, in
this case, each M′ t

j is a random variable, since it can vary
across different runs of a simulation. We use terms such as
“population”moments to refer to expectations across agents
in a population, such as M′ t

j , and “run” moments to refer
to expectations across different runs of a simulation. Some
properties of this system are that:

• Xt a.s.
→ (M′ 0

1 )na

i=1 = (0.5)na

i=1 as t → ∞ — the popula-
tion approaches consensus almost surely, and

• M′ t
1 = M′ 0

1 = 0.5 for all t — opinion changes from
interactions do not change the population mean.

Figure 2 shows how agent opinions change over time during
a single simulation run.

5. ANALYTICAL PREDICTION
Let M′ t = (M′ t

j )∞j=0 be a zero-indexed vector of all raw
population moments at time t. Since the agents’ opinions
have bounded support, these moments are guaranteed to
exist; more specifically, they are supported on the interval
[0, 1]. The zeroth order moment M′ t

0 , which is always 1, is
included as a check on the validity of predictions. Recall
that the population moments are random variables, since
they can take on different values in different runs. We are
interested in the probability distribution across runs of these
population moments, which can be described by the mo-
ments of M′ t. These population-run moments will be ref-
erenced with multi-indices3: let

m
′ t
α = Eruns

[(

M
′ t)α] = Eruns

[

∏

j

(M′ t
j )αj

]

(17)

be the αth moment across runs of the population moments
for (finite-dimensional) multi-index α, where Eruns is the ex-
pectation operator across the probability space of theoretical
runs of the system. For example, at time t:

3An n-dimensional multi-index α ∈ N
n
0 generalizes the con-

cept of a power to vectors x ∈ R
n. It has order |α| =

∑

i αi,
factorial α! =

∏

i
αi!, and power operation xα =

∏

i
x
αi
i . We

use zero-indexing of multi-index components. Multi-indices
are partially ordered: α ≤ β ⇔

∧n−1
i=0 (αi ≤ βi).
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• m
′ t
(k) = Eruns

[

(M′ t
0 )k

]

= 1 is the kth moment across
runs of the zeroth population moment, which is always
1

• m
′ t
(0,1) = Eruns

[

(M′ t
1 )1
]

= 0.5 is the mean across runs
of the population mean, which is always 0.5

• m
′ t
(0,2) = Eruns

[

(M′ t
1 )2
]

= 0.25 is the raw variance
across runs of the population mean, which is always
0.25

• m
′ t
(0,0,1) = Eruns

[

(M′ t
2 )1
]

is the mean across runs of
the raw population variance, which can be loosely in-
terpreted as the expected level of disagreement in a
population

• m
′ t
(0,1,1) = Eruns

[

(M′ t
1 )1(M′ t

2 )1
]

is the raw covariance
of the population mean and raw population variance,
linked to relationships between the average opinion in
a society and the level of disagreement.

Note that m′ t
α is not a random variable; it does not vary from

agent to agent, nor from run to run. Thus, there is no need
to rely on confidence intervals or similar “probabilistic” error
bounds to quantify error in m

′ t
α : simple L1 error bounds will

be sufficient. The goal of the proposed analytical method is
to predict m′ t

α ’s of interest with these hard error bounds.
Recall that the population is initialized with the same

configuration every run, in which half of the agents hold
opinion o (where o ∈ [0, 1]), and the other half hold opinion
0. Thus, we can find simple equations for the deterministic
values µ′ 0 of the population moments at time 0:

M′ 0
j = µ

′ 0
j =

1

2
(o)j +

1

2
(0)j =

1

2
(o)j . (18)

Since these population moments are nonrandom, the population-
run moments can be written without an expectation:

m
′ 0
α = Eruns

[

(

M
′ 0)α

]

=
(

µ
′ 0)α (19)

=
∏

j

(

µ
′ 0
j

)αj =
∏

j

[

1

2
(o)j

]αj

=
(o)

∑
j jαj

2|α| . (20)

Of course, the starting population configuration could also
be sampled from a distribution.

Let us now examine how to handle transitions in this case.
Let Bt

1 ∼pop Xt be the opinion of the first agent selected in
the interacting pair at time t. Since the selection is uniform
and not influenced by the agent’s profile, it follows the same
distribution as the population, and has the same moments,
M

′ t:

µ
′
j, Bt

1
= M′ t

j , (21)

for all j such that the M′ t
j exists. However, the same is not

true for the bias, Bt
2, of the second agent selected, because

the first agent is disallowed from interacting with itself. In-
stead, the jth moment is given by

µ
′
j, Bt

2
=

naM
′ t
j −

(

Bt
1

)j

na − 1
. (22)

In the Bounded Confidence model, interactions between
agents are deterministic, and for the special case ε = 1, the
new values Bt ′

1 and Bt ′
2 can be written in a simpler form:

B
t ′
1 = B

t
1 + µ

(

B
t
2 −B

t
1

)

= (1− µ)Bt
1 + µB

t
2, (23)

and B
t ′
2 = B

t
2 + µ

(

B
t
1 −B

t
2

)

= (1− µ)Bt
2 + µB

t
1. (24)

The jth population moment at the next time step can then
be expressed by

M′ t+1
j =

naM
′ t
j − (Bt

1)
j − (Bt

2)
j +

(

Bt ′
1

)j
+
(

Bt ′
2

)j

na
(25)

= M′ t
j +

1

na
B

t
∆, j , (26)

where

B
t
∆, j = −(Bt

1)
j − (Bt

2)
j +

j
∑

i=0

(

j

i

)

(1− µ)iµj−i[(Bt
1)

i(Bt
2)

j−i + (Bt
2)

i(Bt
1)

j−i]. (27)

Note that this expression for M′ t+1
j is symmetric — simul-

taneously substituting Bt
1 for Bt

2, and Bt
2 for Bt

1, produces
an equivalent expression. In this case, the “roles” of the two
agents in the interaction can be said to be equivalent. For
interactions between more than two agents, identifying such
symmetry can enable significant improvements in memory
use and computation time.

Applying this formula, we can find, for example, that the
mean opinion value in a population remains unchanged by
this interaction:

M′ t+1
1 = M′ t

1 +
1

na

{

−B
t
1 −B

t
2

+

[(

1

0

)

µ
(

B
t
2 +B

t
1

)

+

(

1

1

)

(1− µ)
(

B
t
1 +B

t
2

)

]}

(28)

= M′ t
1 +

−Bt
1 −Bt

2 + [µ+(1−µ)]
(

Bt
1 +Bt

2

)

na
(29)

= M′ t
1 . (30)

However, the analogous expression for the second population
moment maintains a dependency on Bt

1 and Bt
2:

M′ t+1
2 = M′ t

2 +
1

na

{

−
(

B
t
1

)2
−
(

B
t
2

)2

+

(

2

0

)

µ
2
[

(

B
t
1

)2
+
(

B
t
2

)2
]

+

(

2

1

)

µ(1− µ)
[

B
t
1B

t
2 +B

t
2B

t
1

]

+

(

2

2

)

(1− µ)2
[

(

B
t
2

)2
+
(

B
t
1

)2
]

}

. (31)

Combining coefficients of monomials of Bt
1 and Bt

2 yields:

M′ t+1
2 = M′ t

2 +
1

na

{

4µ(1− µ)Bt
1B

t
2

+
[

µ
2 + (1− µ)2 − 1

]

[

(

B
t
1

)2
+
(

B
t
2

)2
]}

. (32)

Expanding polynomials of µ and then factoring gives a much
simpler form:

M′ t+1
2 = M′ t

2 −
2µ(1− µ)

na

(

B
t
1 −B

t
2

)2
(33)

= M′ t
2 −

2µ(1− µ)

na

(

B
t
2 −B

t
1

)2
. (34)

Since the values of Bt
1 and Bt

2 do not directly affect the
behavior of the system at subsequent time steps (implied by
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the fact that the system is Markovian), and the predictions
we would like to make do not involve these values either,
these dependencies can be safely marginalized out of repre-
sentations of M′ t+1 with no effect on accuracy. This gives
a simpler form for the αth population-run moment:

m
′ t+1
α = ErunsEBt

1
EBt

2

[

(

M
′ t+1

)α
]

(35)

= ErunsEBt
1
EBt

2

[

∏

j

(

M′ t+1
j

)αj

]

(36)

= ErunsEBt
1
EBt

2

[

∏

j

(

M′ t
j +

1

na
B

t
∆, j

)αj

]

(37)

= ErunsEBt
1
EBt

2





∑

0≤|β|≤|α|

(

M
′ t)β
(

1

na
B

t
∆

)α−β



 (38)

=
∑

0≤β≤α

Eruns

[

(

M
′ t)β

EBt
1
EBt

2

[

(

Bt
∆

)α−β
]]

na
|α|−|β| , (39)

where Bt
∆ is a vector of the monomials Bt

∆, j for all j of

interest. The expression
(

Bt
∆

)α−β
can be expanded further

into a polynomial of Bt
1 and Bt

2 (with degree
∑

j
j(αj−βj)),

allowing each m
′ t+1
α to be expressed as a sum over expec-

tations of monomials of M′ t, Bt
1, and Bt

2. While the gen-
eral expression for m

′ t+1
α is quite complicated, computing

it for particular multi-indices α is straightforward using a
basic computer algebra system. For purposes of applying
the expectations EBt

1
and EBt

2
, the moments M

′ t can be

considered a constant — these expectations produce results
containing M′ t

j terms and factors, but the outcomes of the
underlying probability space do not determine anyM′ t

j . Ap-
plying the expectation Eruns, we obtain an expression for
m

′ t+1
α in terms of elements from m

′ t.
To illustrate the above process, let us find an expres-

sion for m
′ t+1
(0,0,1), the mean-over-runs of the uncentralized

variance-over-agents of opinion values:

m
′ t+1
(0,0,1) =

∑

(0,0,0)≤β≤(0,0,1)

Eruns

[

(M′ t)βEBt
1
EBt

2
[(Bt

∆)(0,0,1)−β ]
]

na
1−|β| (40)

=
Eruns

[

(

M
′ t)(0,0,0)

EBt
1
EBt

2

[

(

Bt
∆

)(0,0,1)−(0,0,0)
]]

na
1−(0)

+
Eruns

[

(

M
′ t)(0,0,1)

EBt
1
EBt

2

[

(

Bt
∆

)(0,0,1)−(0,0,1)
]]

na
1−(1)

(41)

=
−2µ(1− µ)

na
ErunsEBt

1
EBt

2

[

(

B
t
1

)2
− 2Bt

1B
t
2 +

(

B
t
2

)2
]

+ Eruns

[

M′ t
2

]

(42)

=
−2µ(1− µ)

na
ErunsEBt

1

[

(Bt
1)

2 − 2Bt
1
naM

′ t
1 − (Bt

1)
1

na − 1

+
naM

′ t
2 − (Bt

1)
2

na − 1

]

+ Eruns

[

M′ t
2

]

(43)

=
−4µ(1− µ)

na − 1
Eruns

[

M′ t
2 −

(

M′ t
1

)2
]

+ Eruns

[

M′ t
2

]

(44)

=
−4µ(1− µ)

na − 1

(

m
′ t
(0,0,1) −m

′ t
(0,2,0)

)

+ m
′ t
(0,0,1). (45)
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constant half-0-half-1 population initialization, ε = 1,
µ = 1

2
, na = 100.

All of the (marginalized) population-run moments at time
t + 1 can be found in terms of population-run moments
at time t using similar computations. Note that the ex-
pression for m

′ t+1
α is a weighted sum over m

′ t
β terms where

∑

j
jβj =

∑

j
jαj . The form of the solution as a weighted

sum over previous population-run moments follows from the
linearity of the expectation operations and form of their ar-
guments as polynomials over population moments and agent
profiles — this holds in many, but not all, cases. The pattern
in index restrictions can be explained by the “unit compat-
ibility” of the system, and can be used to guarantee better
computation time and space than in the general case.

While the above prediction for m′ t+1
(0,0,1) is exact — it has no

error, and no associated confidence level or “probability” of
being correct, a brief comparison to simulated data may ease
any doubts about its fidelity. Figure 3 shows the simulated
raw variance in opinion values across a population for 150
individual simulations, as well as the above prediction for
the mean-across-runs of the raw population variance. The
close (visual) correspondence between the mean of the simu-
lation results and the predicted mean helps confirm that the
analytical prediction is producing valid results. In this case,
the raw population variance in the trials appears to be fairly
consistent across runs, and it is reasonable to assume that
the sample mean of the raw population variance would have
tighter confidence interval bounds than the sample mean of
the payoff in the coin flip scenario for the same confidence
level and number of simulations. However, the deviations
in the raw sample variance are still significant, and several
additional orders of accuracy and reliability are needed for
the purposes of making economic decisions or determining
parameters for physical design based on this number. Per-
forming comparative hypothesis tests of the mean of the raw
population variance at different time steps will also gener-
ally require many more simulations. However, the central
limit theorem also applies in this case, and the exponential
batch-size requirement for degree of accuracy still holds.

We can use higher-order run-moments to gain additional
information about the variability in system behavior. For
example, the run standard deviation of the raw population
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variance is given by
√

Eruns

[

(M′ t
2 − Eruns [M′ t

2 ])2
]

=

√

Eruns

[

(M′ t
2 )2 − 2 (M′ t

2 )
(

m
′ t
(0,0,1)

)

+
(

m
′ t
(0,0,1)

)2
]

(46)

=

√

m′ t
(0,0,2)

−
(

m′ t
(0,0,1)

)2

. (47)

Figures 4 and 5 show the correspondence between the pre-
dictions for the run standard deviation of the raw popula-
tion variance and the spread of the simulated raw population
variance. Tools such as Chebyshev’s inequality give an idea
of how much variability to expect: ≥ 75% of trials within two
standard deviations of the mean, ≥ 88% within three, and
so on. Edgeworth series provide a method to incorporate the
information provided by higher-order moments. These tools
deal with the true run distribution of the raw population
variance, rather than the distribution of simulation results,
though, so some violations are possible.

In some cases, we may be interested in high-order run-
moments of low-order population moments, but not in low-
order run-moments of high-order population moments. For
example, the raw kurtosis of the population mean may be
of interest while the mean of the raw population kurtosis
is not. However, the latter quantity may influence the fu-
ture values of the former. In this situation, there are two
straightforward choices:

• track the influential, but “uninteresting”, population-
run moments, then discard them; or

• approximate the effect of “uninteresting” population-
run moments using lower-order ones, sacrificing some
accuracy in exchange for lower computation costs.

For example, suppose that we want to track the second-order
(co)moments-across-runs of the zeroth through second raw
population moments. Performing analysis similar to that
above, we find that the raw covariance of the population
mean and raw population variance at time t+ 1 ≥ 1 is

m
′ t+1
(0,1,1) =

1

na − 1
m

′ t
(0,3,0) +

na − 2

na − 1
m

′ t
(0,1,1) (48)

=
1

na − 1
Eruns

[

(

M′ t
1

)3
+ (na − 2)

(

M′ t
1

) (

M′ t
2

)

]

. (49)

Suppose that m
′ t
(0,3,0), the raw skewness of the population

mean at time t, is not of interest, and is not tracked for
the sake of computational efficiency. Then the expecta-

tion Eruns

[

(

M′ t
1

)3
]

must be approximated using the other

population-run moments that are available. We know that
the support of M′ t

1 is a subset of [0, 1], since it is the mean
of values that all lie on [0, 1]. Thus, one bounds function for
(

M′ t
1

)3
is [0, 1] ·

(

M′ t
1

)2
, and a bounds function for m

′ t+1
(0,1,1)

is

[0, 1]

na − 1
m

′ t
(0,2,0) +

na − 2

na − 1
m

′ t
(0,1,1). (50)

For systems with many agents, the potential error intro-
duced by this approximation at any individual time step will
be small, but will grow exponentially over time. However,
using bounds arithmetic to find support supersets actually
preserves the exact answer in this case. Consider o = 1. The
support of M′ 0

0 is RM′ 0
0

=
{

1
2

}

, from the static initial pop-

ulation configuration. The support of the population mean
at time t+ 1 can then be calculated recursively:

RM′ t+1

0

= RM′ t
0

+ 1
na

[−1+µ+(1−µ)](Bt
1
+Bt

2
) = RM′ t

0
. (51)

In this case, the result is rather simple, due to the fact that
the population mean M′ t

1 is constant across all t, and was
initialized to a constant value of 1

2
. (In fact, any run-moment

m
′ t
(0,j) of the population mean is also a constant.) Conse-

quently, we find that RM′ t
0

=
{

1
2

}

for all t. In more complex

cases, we can find supersets of supports (and in some cases,
the supports themselves) using the error-bound arithmetic
described earlier.

6. COMPLEXITY

6.1 Population size-independence
The space and time complexity of the proposed method

are directly dependent on the number of agents in each in-
teraction, rather than the number of agents in a population.
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In systems such as the Bounded Confidence model and the
repeated gameplay scenario, it takes the same amount of
time (assuming floating-point math) to perform predictions
for populations of size two as it does for those with a million
agents or more, enabling prediction for larger systems than
is feasible with simulations. Unlike typical mean field ap-
proaches, though, this independence is not achieved through
approximating the population with the “infinite-agent” case.
When agents change their profiles, migrate between pop-
ulations, or are selected without replacement, the effects
on population moments incorporate an appropriate depen-
dency on the population size that generally takes a constant
amount of time (e.g., floating-point multiplication).

6.2 Composing transitions
Note that the transitions of the moments in the system

can be represented in matrix form. Let At+1
t be such a

transition matrix for the time step from t = 0 to t = 1,
with each row corresponding to a new moment m

′ t+1
α , and

each column corresponding to an old moment m
′ t
α . Let us

assume that the αs of interest are the same at every time
step, and that a consistent ordering over these αs is used.
The moments at time t = 1 are given by the matrix-vector
product

m
′ t+1 = A

t+1
t m

′ t
. (52)

If At+1
t and m

′ t are dense, then evaluating this matrix-
vector product takes O

(

|A|2
)

time, where A is the set of αs
of interest. If the system is time-homogeneous, and there is
an exact transition matrix A, then the tth set of population-
run moments is given by

m
′ t = (A)t m′ 0

, (53)

which can be evaluated by either repeated matrix-vector
products, taking O

(

|A|2 t
)

time, or a matrix power followed
by a matrix-vector product, usually with a time complexity
of

O
(

m(|A|) lg t+ |A|2
)

, (54)

where m(|A|) is the cost of multiplying two |A|× |A| matri-
ces. For näıve matrix multiplication, m(|A|) = |A|3; other
options include Strassen’s algorithm [12] and any relevant
sparse matrix multiplication algorithms. The lg t term is
the result of a common trick used to reduce the complex-
ity of power operations. To illustrate, consider the task of
finding A8; this can either be computed as

A
8 = ((((((AA)A)A)A)A)A)A, (55)

using seven matrix multiplications, or as A8 = ((A2)2)2, us-
ing three. Eigendecomposition-based approaches offer addi-
tional candidates for changing the complexity of prediction.

7. INFERENCE AND OPTIMIZATION

7.1 Inferring moments of initial distribution
Given an estimate

∧

m
′ t of the population-run moments

m
′ t at time t (using Monte Carlo simulations or some other

method), it is fairly simple to obtain an approximation of
the initial population configuration, or run-moments m

′ 0

of the initial population configuration distribution. Since
m

′ t = At
0m

′ 0 for an appropriate transition matrix At
0,

m
′ 0 =

(

Zt
0

)

m
′ t for any Zt

0 such that Zt
0A

t
0 = I, and a
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Figure 6: Run mean of population raw variance vs.

µ for times 0 ≤ t ≤ 10, na = 10, constant half-0-half-1

initialization.

rough approximation of a possible value of m′ 0 is given by
∧

m
′ 0 = Z

t
0

∧

m
′ t
. (56)

7.2 Inferring model parameters
We can perform approximate inference simply using equa-

tion solvers by incorporating model parameters (e.g., m′ 0 or
µ in the BC model) into predictions symbolically. For exam-
ple, consider the BC model with ε = 1, na = 10, o = 1, and
µ unknown, with five agents initialized with opinion 0 and
the rest with opinion 1. The run-mean of the raw population
variance at time 1 is then

m
′ 1
(0,0,1) =

1

2
−

1

9
µ+

1

9
µ
2
. (57)

Given empirical data or simulation outputs, the above equa-
tion can be used to tune the parameter µ so that the model
predictions for m′ 1

(0,0,1) match the observations. For example,

by substituting the estimate
∧

m
′ 1
(0,0,1) = 0.48224 (which was

obtained by averaging over the raw population variances at
the first time step in 105 simulations) into the above equa-
tion for m′ 1

(0,0,1) and applying the quadratic formula, we ob-
tain two potential (rounded) estimates for µ:

µ̂1, 2 = 0.1997, 0.8003. (58)

In this case, the actual µ value was 1
5
, and the true value

for m′ 1
(0,0,1), found using the proposed analytical techniques,

is 0.482̄. Note that the behavior of the system is identical
when µ = 4

5
, so both estimates for µ are very close to values

that replicate the system’s behavior.

7.3 Studying effects of parameters
Once again, by performing prediction of some quantity of

interest incorporating parameters symbolically, the effects of
parameters can be studied using a single run of the theoret-
ical model, rather than running batches of simulations for
a large number of parameter configurations. Figure 6 plots
the run mean of the population raw variance against the µ

parameter in the BC model. The initial value, m′ 0
(0,0,1) =

1
2
,

represents division of the population into two factions at the
edges of the opinion space. For 0 < µ < 1, the population
will almost surely converge to a configuration representing
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consensus on the opinion value 1
2
as t → ∞, and m

′ t
(0,0,1) will

approach 1
4
. From the graph, we can easily see that when

µ = 0 or µ = 1, no progress is made towards consensus
of population opinions. The absolute minimum at µ = 1

2
,

noted earlier, is clearly seen in this graph, as well as the
symmetry in system behavior about µ = 1

2
.

7.4 Optimizing performance metrics
Suppose that we would like the run-mean raw population-

variance to decrease as quickly as possible over the first time
step, and have the ability to select any µ value for the sys-
tem on the interval [0, 1]. The optimal µ value µ∗ can be
calculated using a numerical optimization package:

µ
∗ = min

µ∈[0,1]
m

′ 1
(0,0,1) = min

µ∈[0,1]

(

1

2
−

1

9
µ+

1

9
µ
2

)

=
1

2
. (59)

Another example of the use of such optimization would be
to find an optimal amount to penalize agents for defecting
in the prisoner’s dilemma game in order to maximize social
welfare, minus the cost of enforcing the penalties.

8. EXTENSIONS
Suppose we are interested in more complex transitions

involving functions involving division, roots, jump disconti-
nuities, or other operations not well-represented by Taylor
polynomials. The backbone of this method can remain the
same: represent the function with some type of series, such
as Laurent, Puiseux, or Fourier series (truncated to some
number of terms). Raw moments will be replaced by ex-
pectations based on the type of series used; e.g., if function
f(x) is modeled using a Laurent series

∑

i∈Z
cix

i, then we

will track expectations from {E
[

Xi
]

}i∈Z. The expectation
E [f(X)] remains a dot product between series coefficients of
f and corresponding expectations of X, so time step tran-
sitions can be represented as matrix multiplication. Topics
for future work include extending the model to handle more
complex interaction schemes, such as simultaneous interac-
tion of distinct pairs, migration between populations, and
interaction on network topologies.

9. CONCLUSIONS
Analytical models with hard error bounds are a viable

alternative to Monte Carlo simulation for study of some
stochastic multiagent systems. Benefits of analytical ap-
proaches include the possibility of obtaining exact answers,
independence of computational complexity and population
size, and ability to transform the complexity of prediction.
Symbolic expressions can be incorporated to efficiently pre-
dict effects of model parameters, infer information about
past distributions, tune model parameters to fit empirical
data, and find parameter values to optimize a performance
metric. In the Bounded Confidence model with ε = 1, mod-
eling distributions with their raw moments and functions
with Taylor polynomials closely predicts future moments
of the system, outperforming Monte Carlo simulations and
previous analytical approaches in terms of speed and ac-
curacy. By incorporating additional types of mathematical
tools to approximate functions and distributions, this ana-
lytical technique can be extended to make effective predic-
tions about the behavior of a wide range of systems.
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