
To help or not to help1Mahendra SekaranSandip SenDepartment of Mathematical & Computer SciencesUniversity of TulsaTelephone: (918) 631-2985Fax: (918) 631-3077Email: mahend@euler.mcs.utulsa.edu, sandip@kolkata.mcs.utulsa.eduAbstractAny designer of intelligent agents in a multiagentsystem is faced with the choice of encoding a strat-egy of interaction with other agents. If the natureof other agents are known in advance, a suitablestrategy may be chosen from the continuum be-tween completely sel�sh behavior on one extremeand a philanthropic behavior on the other. In anopen and dynamic system, however, it is unrealis-tic to assume that the nature of all other agents,possibly designed and used by users with very dif-ferent goals and motivations, are known precisely.In the presence of this uncertainty, is it possible tobuild agents that adapt their behavior to interactappropriately with the particular group of agents inthe current scenario? We address this question byborrowing on the simple yet powerful concept of re-ciprocal behavior. We propose a stochastic decisionmaking scheme which promotes reciprocity amongagents. Using a package delivery problem we showthat reciprocal behavior can lead to system-wide co-operation, and hence close to optimal global perfor-mance can be achieved even though each individualagent chooses actions to bene�t itself. More inter-estingly, we show that agents who do not help othersperform worse in the long run when compared withreciprocal agents. Thus it is to the best interest ofevery individual agent to help other agents.IntroductionThe design of intelligent agents that will interactwith other agents in an open, distributed system in-volve the modeling of other agents and their behav-ior (Gasser, 1991; Hewitt 1991). Assuming all agentswill be cooperative in nature, e�cient mechanismscan be developed to take advantage of mutual coop-eration, which can produce improved global perfor-mance. But, in an open system, assumptions aboutcooperative agents or system-wide common goals arehard to justify. More often, we will �nd di�erentagents have di�erent goals and motivations and noreal inclination to help another agent achieve its ob-jectives.1With due apology to William Shakespeare.

The above situation may appear to be hopeless. Ifan agent cannot assume other agents to be coopera-tive, it might as well solve its problems individually.But this leads to ine�cient problem solving perfor-mance because agents miss out on mutually bene�-cial interactions. Even if two individual agents areself-motivated, they should cooperate if such an ar-rangement is bene�cial for both. The question there-fore is, when should an agent help another agent?We cannot rely on in-built inclination towards coop-eration. The decision to cooperate should be madeto serve the agent's own interests. In this paper,we provide a decision-making paradigm that enablesautonomous agents to accept or decline requests forcooperation from other agents based on local ratherthan global considerations.We assume agent actions to be self-motivated.This means that an agent will help another agent,only if such an action is bene�cial to itself in theshort or the long run. We use the concept of reci-procity to show that when agents help others whohave helped them in the past or can help them inthe future, cooperative behavior can evolve out ofself-motivation. We propose a stochastic methodfor deciding whether one agent should help anotheragent or not in a particular situation. Agents whouse this stochastic reciprocity mechanism are calledreciprocative agents We analyze the e�ects of sel�shagents (agents who receive help but do not recipro-cate) on the behavior of other reciprocative agents.We also characterize the performance of individualagents (agents who never help each other) and phil-anthropic agents (agents who always help others ifrequested), and demonstrate that a society of recip-rocative agents can approximate philanthropic be-havior under proper environmental conditions. Ourresults show that close to optimal system perfor-mance can be obtained without sacri�cing individualpreferences or autonomy.Coordination of multiple agentsMultiagent systems are a particular type of dis-tributed arti�cial intelligence (DAI) system (Bond,1988), in which autonomous intelligent agents in-



habit a world with no global control or globally con-sistent knowledge. In contrast to cooperative prob-lem solvers (Durfee,Lesser, Corkill, 1989), agentsin multiagent systems are not pre-disposed to helpeach other out with the resources and capabilitiesthat they possess. These agents may still need to co-ordinate their activities with others to achieve theirown local goals. They could bene�t from receivinginformation about what others are doing or plan todo, and from sending them information to in
uencewhat they do.Coordination of problem solvers, both sel�sh andcooperative, is a key issue in the design of an e�ectiveDAI system. The search for domain-independent co-ordination mechanisms has yielded some very di�er-ent, yet e�ective, classes of coordination schemes.Whereas some of these work uses architectures andprotocols designed o�-line (Fox, 1989; Smith,1980)as coordination structures, others acquire coordina-tion knowledge on-line (Durfee, 1988; Sekaran Sen,1994). In addition, some of these work assumesagents to be cooperative with common system-widegoals (Durfee, 1988; Fox, 1981), and others assumeself-motivated agents with individual goals (Gene-sereth, 1986; Gmytrasiewicz, 1991). The other di-mension to consider is if we are analyzing a singleinstance of agent interaction or if we are consideringan ensemble of agent interactions (e.g., in the pris-oner's dilemma problem (Rapoport, 1989), most ofthe formal analysis assume repeated interactions).In this paper, we assume agents have individualgoals or tasks to complete. These individual goals,however, can be achieved more expediently if anagent receives assistance from other agents. Thissuggests that both individual and overall systemperformance will improve if agents can intelligentlyshare tasks. We will consider agents who repeatedlyinteract with each other, and hence past history ofproblem solving can be used to decide future courseof action. The question here is the following: giventhat there are scopes for cooperation, how shouldself-motivated agents choose when to cooperate andwhen not to cooperate with another agent? In thefollowing section we provide an on-line mechanismto answer this question.Reciprocal decision makingIn a companion paper (Sen, 1995) we have shownthat reciprocal behavior can be used e�ectively byagents to balance their workloads. In that paper,each task could be carried out by any agent, andagents could exchange tasks to improve local perfor-mance. In this paper we �nd out if reciprocity issu�cient to promote cooperation when agents can-not transfer tasks, but can use help from others toreduce the cost of performing an assigned task.

We assume a multiagent system with N agents.Each agent is assigned to carry out T tasks. Thejth task assigned to the ith agent is tij, and if agenti carried out this task on its own, the cost incurredis C1ij. However, if another agent k helped agent i tocarry out this task, the cost incurred by each of themis C2ij. We assume that 2 �C2ij < C1ij, which impliesthat if two agents together work on the same task,the combined e�ort required to process the task isless than what it would take one of them to pro-cess it. Since the savings, C1ij � C2ij, obtained bythe agent being helped is greater than the cost in-curred by the helping agent, C2ij, there is a net sav-ing of e�ort for the entire system. This saved e�ortwhen combined with reciprocal behavior, can lead toa system with e�ective individual as well as groupperformance. So, the gain of an individual is not atthe expense of the group.The obvious question is why should an agent in-cur any extra cost for another agent? If we con-sider only one such decision, cooperation makes lit-tle sense. If, however, we look at a collection of suchdecisions, then reciprocal cooperation makes perfectsense. Simple reciprocity means that an agent willhelp another agent if the latter has helped the for-mer in the past. But simple reciprocity by itself isnot su�cient to evolve cooperative behavior. Thisis because, no one is motivated to take the �rst co-operative action, and hence nobody ever cooperates!In spite of all the potentials for cooperation and thebene�ts that it can provide them, agents carry outtheir own tasks without ever o�ering to help others.In real life, in addition to past experience, reci-procity includes a predictive mechanism. An agentcan help another agent, if it expects future bene�tsfrom the latter. In absence of a general domain-independent predictive mechanism, we propose amuch simpler but equally e�ective stochastic choicemechanism to circumvent the problem of simple reci-procity. We will de�ne Sik and Wik as respectivelythe savings obtained from and extra cost incurredby agent i from agent k over all of their previous ex-changes. Also, let Bik = Sik�Wik be the balance ofthese exchanges (obviously, Bik = �Bki). We nowpresent the probability that agent k will help agenti carry out task tij . This probability is calculatedas: Pr(i; k; j) = 11 + expC2ij���Ckavg�Bki� ;where Ciavg is the average cost of tasks performedby agent i (this can be computed on-line or preset),and � and � are constants. This gives a sigmoidalprobability distribution in which the probability ofhelping increases as the balance increase and is morefor less costly tasks. We include the Cavg term be-cause the probability of helping should depend onrelative and not absolute cost (if the average cost is



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

P
ro

ba
bi

li
ty

 o
f 

he
lp

in
g

Extra cost

(1.0 / (1.0 + (exp ((x - 12.5) / 4.0))))

Figure 1: Probability distribution for accepting re-quest for cooperation.10, incurring an extra cost of 10 is less likely thanincurring an extra cost of 1). Due to the stochasticnature of decision-making some initial requests forcooperation will be granted whereas others will bedenied. This will break the deadlock that preventedsimple reciprocity from providing the desired systembehavior.We present a sample probability distribution inFigure 1. The constant � can be used to move theprobability curve left (more inclined to cooperate)or right (less inclined to cooperate). At the onset ofthe experiments Bki is 0 for all i and k. At this pointthere is a 0.5 probability that an agent will help an-other agent by incurring an extra cost of � � Ckavg.The factor � can be used to control the steepness ofthe curve. For a very steep curve approximating astep function, an agent will almost always accept co-operation requests with extra cost less than ��Ckavg,but will rarely accept cooperation requests with anextra cost greater than that value. Similar analysesof the e�ects of � and � can be made for any cooper-ation decision after agents have experienced a num-ber of exchanges. In essence, � and � can be used tochoose a cooperation level (Goldman, 1994) for theagents at the onset of the experiments. The level ofcooperation or the inclination to help another agent,however, dynamically changes with problem solvingexperience.A package delivery problemIn this section, we present a simple package deliv-ery problem which we will use to demonstrate thee�ectiveness of our proposed mechanism to evolvecooperative behavior. Each of N agents is assignedto deliver T packets from a centralized depot to ran-dom destinations located at a distance between 1

and D from the depot. An agent can carry onlyone packet at a time by itself or with the help ofanother agent. On arriving at the depot, an agentis assigned the next packet it is to deliver. At thispoint, it checks for other agents currently located inthe depot. If so, it asks the other agent for help todeliver this packet. This requests may or may notbe honored.The cost incurred by agents is the time taken todeliver packets. An agent takes 4 time units to coverunit distance if it is carrying a packet by itself. Thespeed of traveling increases to unit distance per timeunit when another agent is helping it. When agentsare returning to depot after delivery, they travel unitdistance in unit time.Experimental resultsIn this section, we present experimental results onthe package delivery problem, with agents using thereciprocity mechanism described before to accept ordeny a request for help from another agent. We varythe number of agents and packets to be delivered byeach agent to examine the e�ects of di�erent envi-ronmental conditions. Values of other parametersused are: D = 10, � = 4, and � = 0:5. Resultsare averaged over 10 di�erent randomly generateddata sets, where a data set consists of an orderedassignment of package deliveries to agents. All theagents are assigned the same number of deliveries.The evaluation metric is the total cost incurred bythe agents to complete all their deliveries.We used this domain to investigate the e�ectsof agent characteristics on overall systems perfor-mance. In our experiments, philanthropic agentsalways agree to help another agent when requested;sel�sh agents request for help but never help oth-ers; individual agents neither ask for help nor pro-vide help to other agents; reciprocative agentsuse the balance of cost and savings to stochasticallydecide whether to accept a given request for coop-eration. In homogeneous environments (where allagents are of the same type), we expect the groupof individual agents and the group of philanthropicagents to provide the two extremes for system per-formance. The individual agents should incur thehighest cost to complete their deliveries (becauseno one is cooperating), whereas the philanthropicagents should should incur the least cost. We ex-pect reciprocative agent behaviors to lie in between.The frequency of occurrence of cooperation possi-bilities should determine which of the two ends ofthe spectrum is occupied by the reciprocative agents.Whether sel�sh agents can bene�t at the expense ofreciprocative agents depends on the percentage ofsel�sh agents in the group and the total number ofinteractions they are likely to encounter. It wouldseem that reciprocative agents should perform bet-
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Figure 2: Average total cost incurred by an agent tocomplete all deliveries.ter because with su�cient interactions they becomephilanthropic towards each other, a possibility de-nied of the sel�sh agents.For the �rst set of experiments, we chose the num-ber of agents, N , as 100 and varied the number ofdeliveries per agent from 100 to 500 in incrementsof 100. Experiments were performed on homoge-neous groups of individual, reciprocative, and phil-anthropic agents. Results from these set of experi-ments are presented in Figure 2. As expected, theperformance of the individual agents was the worst,and the philanthropic agents was the best. The in-teresting thing is that the performance of the recip-rocative agent is almost identical to that of phil-anthropic agents. This is a signi�cant result be-cause it shows that under proper environmental con-ditions (frequent and prolonged interactions withpossibilities of cooperation), self-motivated behav-ior based on reciprocity can produce mutually co-operative behavior that leads to near-optimal sys-tem performance. In addition, with more deliveries,the savings in cost incurred is more with reciproca-tive and philanthropic agents over individual agents.The ratio of corresponding points on the two curvesshould be the same, however, as it is determined bythe probability of another agent being able to helpone agent with its delivery. For the package deliv-ery problem described in the previous section thisprobability is largely determined by the maximumdistance traversed from the depot, D, and the num-ber of agents, N .We also performed a similar set of experiments by�xing the number of deliveries per agent at 500 andvarying the number of agents from 25 to 50 to 75to 100. Results from these set of experiments arepresented in Figure 3. Since the average distanceof a package destination from the depot is 5.5, the
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PhilanthropicFigure 3: Average total cost incurred by an agent tocomplete all deliveries.average cost incurred by an individual agent for de-livering a packet is 22 on the way out and 5.5 on theway back, for a total of 27.5. To deliver 500 packets,therefore, the expected cost incurred by an individ-ual agent is 13,750. This fact is veri�ed in the �gure.As in the previous experiment, the performance ofthe individual agents was the worst, and the phil-anthropic agents were the best. The performance ofthe reciprocative agents was very close to that of thephilanthropic agents, and these improved with moreagents. The reason for this improvement was thatwith more agents, there is more scope for coopera-tion. However, a level of saturation is reached whenall cooperation oppurtunities have been exploited.At this point, an increase in the number of agentsdo not lead to further improvement in system per-formance.The next set of experiments were designed to �ndout the e�ects of including sel�sh agents in a groupcontaining reciprocative agents. We expected thatsel�sh agents should be able to obtain some helpfrom reciprocative agents, and their performancewould be better than individual agents but not asgood as that of reciprocative agents. For these setof experiments, we chose N = 100 and the numberof deliveries to be 500. We varied the percentage ofsel�sh agents in the group. Results are presented inFigure 4. The average performance of the group liesin between the performance of the sel�sh and recip-rocative agents, and moves closer to the performanceof the sel�sh agents as the percentage of the latter isincreased. The sel�sh agents are able to exploit thereciprocative agents to improve their performancesigni�cantly over individual agents. This is becausethere are many reciprocative agents and they do notshare their balance informationwith other reciproca-tive agents. If a reciprocative agent would broadcastthe continuous denial of request for help by a sel�sh
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Figure 4: Average total cost incurred by each agentto complete all deliveries as the percentage of sel�shagent in a group of reciprocative agents is varied.The individual and the philanthropic agent resultsdo not contain sel�sh agents and are presented forcomparison.agent who has got a positive balance with the re-questing agent, the sel�sh agent would not be able toexploit other reciprocative agents. Since reciproca-tive agents incur extra cost for sel�sh agents withoutbeing reciprocated, their performance is noticeablyworse than the performance of philanthropic agents.So, the presence of sel�sh agents can lower the per-formance of the whole group.To further analyze the relative performance of self-ish and reciprocative agents, we ran a set of experi-ments varying the number of deliveries while keepingN = 100 of which 25 agents were sel�sh in nature.Results from these experiments are presented in Fig-ure 5. An interesting result was that with few de-liveries to make, sel�sh agents outperformed recip-rocative agents. This can be explained by the factthat the number of reciprocative agents were largeenough compared to the number of deliveries, whichallowed sel�sh agents to exploit reciprocative agentsfor most of its deliveries. The performance of thereciprocative agents was a�ected, as they could notrecover from the extra cost incurred to help thesesel�sh agents. With su�cient deliveries to make,however, reciprocative agents emerged as the clearwinners. This lends further credence to our claimthat it is ultimately bene�cial for an agent to bereciprocative rather than sel�sh in domains wherecooperation is always bene�cial to the group.ConclusionsIn this paper, we have shown that agents actingin their own self-interest may �nd it practical tohelp each other. Under appropriate environmental

1000

5000

9000

13000

17000

21000

25000

0 200 400 600 800 1000

A
ve

ra
ge

 to
ta

l c
os

t

Number of deliveries

Comparison of rational and selfish behavior

Selfish
Rational

Figure 5: Average total cost incurred by an agentto complete all deliveries with di�erent number ofdeliveries.conditions, such a group of agents can also delivernear-optimal global performance. This is a signi�-cant result because in an open, distributed environ-ment, the only defensible strategy an autonomousagent can follow in deciding its actions is that gov-erned by self-interest. Our analysis and experimentsshow that reciprocal behavior can serve self-interestas well as global e�ciency concerns. Since, recipro-cating behavior produces better performance in thelong run over sel�sh or exploitative behavior, it isto the best interest of all agents to be reciprocative.It is interesting to note that our proposed mecha-nismwill automatically track behavior changes (e.g.,if a reciprocative agent becomes sel�sh) and ad-just agent responses accordingly. This is a powerfulscheme that allows for dynamic behavior adjustmentto suit the changes in the environment. Our resultshold for domains where cooperation always leads toaggregate gains for the group. It would be instruc-tive to study the e�ects of relaxing this constraint.The current reciprocation scheme can be enhancedor modi�ed to address other types of agent interac-tions. If an agent is unable to individually identifyother agents, it can use its overall balance of interac-tions to decide whether or not to accept a request forcooperation. But this also creates new possibilitiesfor exploitative agents. We also plan to investigatemore complex domains such as distributed monitor-ing, distributed information gathering, etc. to fur-ther evaluate the strengths and limitations of ourproposed mechanism.ReferencesBond, A.H. & Gasser, L. (1988). Readings in Dis-tributed AI, San Mateo, CA:Morgan KaufmanPublishers.
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