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Abstract

In many multi-agent systems, the emergence of
norms is the primary factor that determines over-
all behavior and utility. Agent simulations can be
used to predict and study the development of these
norms. However, a large number of simulations is
usually required to provide an accurate depiction of
the agents’ behavior, and some rare contingencies
may still be overlooked completely. The cost and
risk involved with agent simulations can be reduced
by analyzing a system theoretically and producing
models of its behavior. We use such a theoretical
approach to examine the dynamics of a population
of agents playing a coordination game to determine
all the norms to which the society can converge,
and develop a system of linear recurrence relations
that predict how frequently each of these norms
will be reached, as well as the average convergence
time. This analysis produces certain guarantees
about system behavior that canot be provided by a
purely empirical approach, and can be used to make
predictions about the emergence of norms that nu-
merically match those obtained through large-scale
simulations.

1 Introduction

Many aspects of daily life are governed not by laws or moral
injunctions but rather by norms. Norms or conventions rou-
tinely guide the choice of behaviors in human societies and
plays a pivotal role in determining social order [Hume, 1978].
Norms serve to simplify and regularize much of the complex-
ity of the world around us [Lewis, 1969]. Norms typically
become codified into law, but do not start out that way. An
example of a norm might be deciding to always drive on ei-
ther the left side or the right side of the road. The important
characteristic of a norm is that it guides behavior where moral
or rational reasoning does not provide clear guidance. Norms
may also form in contexts where rational choices cannot be
applied because of the myopic behaviors and the limited pro-
cessing abilities of individuals. Consequently, such norms
may prove to be suboptimal.

The systematic study and development of robust mech-
anisms that facilitate emergence of stable, efficient norms

via learning in agent societies promises to be a productive
research area that can improve coordination in agent so-
cieties. Correspondingly, there has been a number of re-
cent, mostly empirical, investigations in the multiagent sys-
tems literature on norm evolution under different assumptions
about agent interaction frameworks, societal topology, and
observation capabilities [Delgado et al., 2003; Kittock, 1994;
Sen and Airiau, 2007; Shoham and Tennenholtz, 1997],
There is an associated need to develop analytical frameworks
that can predict the trajectory and dynamics of emergence and
convergence of society-wide behaviors [van Dyke Parunak,
2002].

Toward this end, we mathematically model the emergence
of norms in societies of agents who adapt their likelihood of
choosing one of a finite set of options based on their experi-
ence from repeated one-on-one interactions with other mem-
bers in the society. The goal is to study both the process of
emergence of norms as well as to predict the likely final con-
vention that is going to emerge if agents had preconceived
biases for certain options.

2 Related Research

Recent literature in multiagent systems show a significant in-
crease in interest and research on normative systems. Norms
or conventions can be substituted as external correlating sig-
nals to promote coordination. These aspects of norms or
conventions have merited in-depth study of the evolution
and economics of norms in social situations [Epstein, 2001;
Posch, 1995; Young, 1996].

Norms can also be thought of as focal points evolved
through learning [Young, 1996] that reduce disagreement and
promote coherent behavior in societies with minimal over-
sight or centralized control [Coleman, 1987]. Norms can
therefore have economic value to agents and help improve
their efficiency.

While some research on norm emergence assumed uniform
interaction probabilities between agents [Sen and Airiau,
2007; Shoham and Tennenholtz, 1997] others have studied
the effect of topologies of agent relationships [Delgado et
al., 2003; Kittock, 1994]. This body of research can be fur-
ther divided into interaction-based learning [Sen and Airiau,
2007] versus observation-based adoption approaches to norm
emergence [Delgado et al., 2003]. In the interaction-based
learning mode, agents learn utility estimates of their behavior



choices and over time converge on a particular behavior that
becomes the norm in the society. In this mode, agents actu-
ally do not even need to observe others’ behaviors, and agents
over time adopt biased behaviors trial-based on their own ex-
periences of what produces higher utility. In the observation-
based learning mode, agents’ behaviors must be fully observ-
able and typically there is no direct consideration of utilities.
The basic idea is to adopt behaviors of successful individuals.

3 Agent Interaction Model

We first characterize our model of agent interactions that
drives the emergence of conventions in the society. Consider
a population of n agents, each of which is capable of perform-
ing two distinct actions. Pairs of agents are randomly selected
to interact. In each interaction, each agent selects one of its
two available actions based on their current biases. The goal
for the agents is to coordinate by selecting identical actions,
but they cannot communicate or negotiate beforehand to co-
ordinate their action choice. Based on the outcome of their
interaction (coordination for identical actions or conflict oth-
erwise), agents adjust their biases for their selected actions.
For the purposes of our formal analysis, we can consider each
bilateral agent interaction to consist of three phases: pairing
of agents, action selection, and bias revision.

In our model, an agent i contains a single value, pi, rep-
resenting the bias or probability of selecting action 1 (this
model can be expanded to include a vector of size m − 1 for
if agents could choose from m different actions). Agent i
selects the other action with the complementary probability,
(1− pi). At each time step, l agents are randomly selected to
interact with each other; based on the outcome of the interac-
tion, each agent i chosen to interact will change its p value by
no more than some constant x using a predefined update rule.

Consider the scenario of a society of agents choosing over
time to adopt a convention of driving on the right or left side
of the road. Each agent can choose one of two actions: an ac-
tion value of +1 indicates that the agent will choose to drive
on the right side of the road, while a value of −1 corresponds
to driving on the left side. Let pt

i represent the bias or likeli-
hood that agent i will choose action +1 at time t. We assume
that all agents have the same initial bias: (∀i)(p0

i = p̄0). At
each time step, two distinct agents are randomly selected with
uniform probability from the population. Each agent selected
calculates a random number ri from U [0, 1] and chooses an
action value :

actti =

{

+1, rt
i < pt

i
−1, rt

i ≥ pt
i

.

If both agents in the pair choose the same action, both will
positively reinforce the action that they chose and play it with
greater frequency in the future. If their actions did not coor-
dinate, then each agent reduces the frequency with which it
plays the action that it chose at that time step. Mathemati-
cally, this can be expressed by:

pt+1
i = max{0, min{1, pt

i + actti · acttj · ∆i(acti)}},

where acttj is the action taken by the other agent in the pair,

and ∆i(acti) is an update function. We have used the two
following update fuctions.

• Constant update rule: ∆i(actti) = x · actti , where x ∈
(0, 1) is a constant. This rule assumes that each agent
will update its preferences in constant increments.

• Proportional update rule:

∆i(actti) = x ·

{

+β + (1 − β)pt
i, actti = +1

−β − (1 − β)(1 − pt
i), actti = −1

,

where β ∈ (0, 1) is a constant. This rule assumes that
the agents that are less biased towards either action will
be less willing to make large changes in their biases.

To aid our analysis and provide better insight into the norm
emergence process, we will make some simplifications to the
model. If 1/x is an integer and an agent is initialized with a
p value that is a multiple of x, then we find that that agent’s p
value will always remain a multiple of x. If all the n agents
have bias values constrained this way, then the population av-
erage, p̄ = 1

n

∑n
i=1

pi, can only assume values that are mul-
tiples of x

n , or n
x + 1 distinct values.

We can then predict the average convergence time and the
final convergence value for a given population bias, p̄. Let
P (p̄) represent the estimated average convergence value for
any population with a current average bias of p̄, and T (p̄) be
the expected number of time steps before converging. We ig-
nore the corrections for values that fall below 0 or above 1.
Consequently, we can express the value of P (p̄) as a weighted
average of the P values for all distributions that could be
reached at the next time step:

P (p̄) =

n/x
∑

j=0

[F (p̄ · n/x, j) · P (j · x/n)] ,

where F (i, j) is the expected probability that a population
with mean bias i · x/n will change its mean to j · x/n due
to a single interaction. For the constant update rule defined
above, this is equivalent to

P (p̄) = (1− p̄)2P
(

p̄ − 2
x

n

)

+2(1− p̄)p̄P (p̄)+ p̄2P
(

p̄ + 2
x

n

)

.

In this expression, (1 − p̄)2 is the probability that two ran-
domly selected agents will both choose to drive on the left
side of the road (actti = acttj = −1) , p̄ − 2 x

n is the resulting

p̄ value at the next time step, and P
(

p̄ − 2 x
n

)

is the average
value to which p̄ will converge in this case. The second term,
2(1 − p̄)p̄P (p̄), deals with the case in which the two agents
do not coordinate and p̄ does not change, since the increase in
the bias value of one agent is exactly offset by the decrease in
the bias value of the other agent. The last term corresponds to
when the two agents coordinate and increase their p values.

A similar expression can be used for T (p̄), with an addi-
tional term of 1 to represent the current time step.

T (p̄) = 1 +

n/x
∑

j=0

[F (p̄ · n/x, j) · T (j · x/n)]

= 1 + (1 − p̄)2T (p̄ − 2x/n)

+2(1 − p̄)p̄T (p̄) + p̄2T (p̄ + 2x/n) .

We need some values of P and T to solve the system. Since
p̄ values of 0 or 1 indicate that the population has converged,



we have definite values of P and T at these points: P (0) = 0,
P (1) = 1 (everyone chooses the same action hereafter), and
T (0) = T (1) = 0 (population already converged). The above
equations for P and T form nearly-diagonal linear systems of
equations, which can be solved in O(n/x) time and space to
give a close approximation of the average convergence time
and values obtained in the simulations. For the proportional
update rule given above, discretization of the distribution of
individual agent p values poses a significantly more difficult
problem. However, a fairly accurate model can be obtained
by discretizing the possible p̄ values into m·n/x+1 intervals,
where m is some positive integer constant. The average value
over all agents of ∆i(actti) when actti = +1 is given by:

∆+ =
1

n

n
∑

i=1

x[β + (1 − β)pi]

= x
nβ + (1 − β)np̄

n
= x(β + (1 − β)p̄).

Similarly, the average value of ∆i(actti) for actti = −1 is
∆− = −x(β + (1− β)(1− p̄)). If we use this average value
of ∆i for all agents, then we can write a set of relationships
similar to those for the constant update rule:

P (p̄) = (1 − p̄)2P
(

p̄ + 2∆
−

n

)

+ 2(1 − p̄)p̄P
(

p̄ + ∆
+

+∆
−

n

)

+ p̄2P
(

p̄ + 2∆
+

n

)

,

T (p̄) =1 + (1 − p̄)2T
(

p̄ + 2∆
−

n

)

+ 2(1 − p̄)p̄T
(

p̄ + ∆
+

+∆
−

n

)

+ p̄2T
(

p̄ + 2∆
+

n

)

.

As with the previous expressions, P (0) = 0, P (1) = 1,
T (0) = 0, and T (1) = 0. These relationships can also
be transformed into nearly diagonal matrices and solved in
O(mn

x ) time and space.
The expressions that we have defined for P and T have ne-

glected any clipping effects for p values outside the interval
[0, 1]. While these expressions provide a good approximation
when all agents begin with the same p value, they lose accu-
racy when the initial distribution is more spread out. In order
to incorporate the clipping effect into the model, additional
terms must be added to the expressions for P and T . The
modified expression for T (p̄) is as follows:

T (p̄) =































































0, p̄ ≤ 0

1 + L2
p̄T (p̄ + 2∆−

n
)

+ 2Lp̄Zp̄T (p̄ + ∆−

n
)

+ 2Rp̄Zp̄T (p̄ + ∆−+β/n
n

)

+
(

O2
p̄ + 2Op̄Zp̄ + Z2

p̄

)

T (p̄)

+ 2Lp̄Op̄T (p̄ + ∆+
−β/n
n

)

+ 2Rp̄Op̄T (p̄ + ∆+

n
)

+ 2Lp̄Rp̄T (p̄ + ∆++∆−

n
)

+ R2
p̄T (p̄ + 2∆+

n
)

, 0 < p̄ < 1

0, p̄ ≥ 1

,

where Zp̄ represents the proportion of agents with p values
of 0, Op̄ the proportion of agents with p values of 1, Rp̄ =

p̄−Op̄ the probability that an agent with a p value other than
0 or 1 will choose to drive on the right side of the road, and
Lp̄ = (1 − Zp̄ − p̄) the counterpart for the left side of the
road; Zp̄ + Op̄ + Rp̄ + Lp̄ = 1.

We also modeled situations where the initial agent distri-
bution is symmetrically distributed about p̄0, e.g., half of the
population has initial bias of p̄0 +σ and the other half has the
initial bias of p̄0 − σ. When a population is distributed sym-
metrically about its mean, we note that Zp̄ + Op̄ increases
when |p̄ − 0.5| is larger (given a constant σ). Additionally,
Z1 = 0 and O0 = 0. Given these facts, we estimate Zp̄ and
Op̄ using the cumulative distribution function Φ of the stan-
dard normal distribution:

Zp̄ ≈ Φ

(

0 − p̄

max{σ, σ + 2
(

1

3
− σ

)

|p̄ − 0.5|}

)

,

Op̄ ≈ 1 − Φ

(

1 − p̄

max{σ, σ + 2
(

1

3
− σ

)

|p̄ − 0.5|}

)

.

The standard deviation of distributions with p̄ values near
zero and one is assumed to approach σ + 2

(

1

3
− σ

)

|p̄ − 0.5|
(where σ is the initial population standard deviation). This
is a somewhat arbitrary choice from many viable candidates;
almost any scaling factor that would yield Z1 ≈ 0 and O0 ≈
0 would have been appropriate.

4 Empirical Validation of Model Predictions

A mathematical analysis provides conceptual value only
when it accurately models the underlying process in ques-
tion. We now examine how well our analysis of the two-agent
interaction problem corresponds to simulated interactions of
agents a simulated population.
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Figure 1: Constant Update Average Convergence Value.

Figure 1 presents a comparison of our analytical compu-
tations and empirical observations of the average value to
which a population will converge as a function of the initial
mean bias. In these simulations, all agents were initialized
with bias values identical to the mean, and the constant up-
date amount is x = 0.01. Each data point represents the aver-
age over 100, 000 simulations or a prediction from the model.



Note that the mean always converges to 0 or 1. Inspection
of the graph suggests that populations tend to converge to 0
when they have an initial p̄ value less than 0.5, and to 1 when
their initial bias is greater than 0.5, regardless of the other
characteristics of the initial distribution. It is heartening to
note that the theoretical predictions from our model almost
perfectly match the empirical observations.
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Figure 2: Constant Update Average Convergence Time.

Figure 2 displays the average number of time steps re-
quired for convergence by populations with the given initial
bias. Both the simulations and the model indicate that popula-
tions with initial means near 0.5 take the longest to converge.
The model predictions for convergence times, though not as
accurate as those for convergence values, are still effective
approximations of simulation results.
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Figure 3: Proportional Update Average Convergence Value,
β = 0.6.

Figures 3 and 4 compare the results for the model and sim-
ulation for the proportional update rule . In these figures we
have zoomed in on the interesting transition region of initial
bias in the range [0.49, 0.51]. For populations with initial
means below 0.49, the average convergence value is approxi-
mately 0, and the average convergence time increases linearly
with the initial population mean. Symmetrical results hold

for populations with initial mean biases above 0.51, with the
population always converging to 1. Like the simulations and
model using the constant update rule, the maximum average
convergence time is observed when the initial mean bias is
0.5. It is interesting to note that the range of initial p̄ val-
ues for which a population is observed to converge both to 0
and to 1 in at least about 1% of simulations is [0.4, 0.6] for the
constant update rule, but only [0.49, 0.51] for the proportional
update rule. The fact that the model has accurately predicted
the decrease in size of this interval provides further validation
of the model’s fidelity.
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Figure 4: Proportional Update Average Convergence Time,
β = 0.6.

Next, we present results where initial population biases are
symmetrically distributed about the initial population mean.
Increasing the standard deviation of the initial distribution of
population p values does not significantly impact the aver-
age final convergence value. It can, however, result in large
increases in average convergence time for both of the update
rules discussed. Figure 5 shows the average convergence time
for an initial population of n = 100 agents, 50 having a initial
p values of 0.5−σ, and the other 50 starting with p = 0.5+σ
when the proportional update rule is used.

4.1 Proof of Convergence

The models discussed above accurately predict the frequency
with which the populations converge to 0 and 1, and the time
that it takes to get there. However, we want to ensure that
the model does not overlook any other possible convergence
values. We now present a proof that the population bias al-
ways converges to 0 or 1, which means that the model does
consider all possible cases.

A distribution D represents a set of bias values for all
members of a population. We call a set of distributions,
C ∈ P ([0, 1]

n
), a “convergence set” iff C 6= ∅ and ∀D ∈

C, S(D) ⊆ C, where S(D) is the set of all distributions
that can possibly be reached at time t + 1 if a distribution
D was present at time t. C is a “minimal” convergence set
iff ∀C′ ⊂ C, C′ is not a convergence set. Let D0 be the dis-
tribution in which all agents have p values of 0, and D1 be
the corresponding distribution for p values of 1. The goal is
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Figure 5: Effects of Initial Standard Deviation on Average
Convergence Time, Proportional Update Rule.

to prove that {D0} and {D1} are the only minimal conver-
gence sets. During this discussion, a population of n agents
will be represented by the multiset

⊎n
i {pi}, where pi is the

ith agent’s bias value.
Proposition 1:{D0} and {D1} are minimal convergence sets.
Proof: For distribution D0, every agent has a p value of 0; at
each time step, both agents selected will always drive on the
left side of the road and will always coordinate. Both agents
will attempt to lower their p values, but since 0 is the lowest
possible, the only configuration that can be reached is D0.
Thus S(D0) = {D0} and {D0} is a convergence set. The
only proper subset of {D0} is the empty set ∅, which, by
definition, cannot be a convergence set. Hence, {D0} is a
minimal convergence set. We can also show that {D1} is a
minimal convergence using similar logic. No proper super set
of {D0} or {D1} can also be a minimal convergence set, by
definition. Thus, no minimal convergence sets contain D0 or
D1 except {D0} and {D1}.
Proposition 2: There are no minimal convergence sets other
than {D0} and {D1} .
Proof: Suppose C is a convergence set such that D0, D1 /∈ C.
Since D0 is the only distribution in C that contains all zero
elements, every distribution in C must contain at least one
non-zero p value. Similarly, from the absence of D1 we can
conclude that there is at least one non-one p value in each
distribution.

Let Clow = {D ∈ C : (∀D′ ∈ C)(p̄D ≤ p̄D′)}. If Clow

contains a distribution D01,p̄ composed of all zeroes and ones,
it must contain at least one of each: D01,p̄ = {0, 1}⊎D01,rest,

where D01,rest ∈ {0, 1}n−2. Thus D01,p̄ −{0, 1}+{βx, 1−
βx} is in S(D01,p̄), Clow, and the next category of distri-
butions. If Clow contains a distribution D with a non-one
p value and another non-one, non-zero value, then S(D) ∋
Dp̄− x

n

, a distribution with a lower p̄ value than D that could
result when the agents from D with these two p values are
selected to interact with each other. However, C does not
have any distributions with a lower mean than those in Clow,
which contradicts the initial assumption that C was a con-
vergence set. Thus, there are no minimal convergence sets
except {D0} and {D1}.

4.2 Further empirical results

The following trends were observed from simulation runs, but
were not approximated by our model predictions.

Consider a population in which the majority of agents usu-
ally drive on the left side of the rode while a minority al-
ways drives on the right. This type of skewed distribution
exhibits different behavior than other distributions with the
same mean. When the initial population mean is not close to
0.5, the skewness of the distribution does not significantly im-
pact convergence statistics. However, when the minority sub-
group has a strong bias towards one action while the majority
subgroup has a weaker bias towards the other action such that
the mean of the entire population is near 0.5, the skewness
produces significant effects on both the average convergence
value and time. Increasing the standard deviation of the ini-
tial distribution will magnify these effects. Figures 6 and 7
show the convergence statistics for an initial population of
100 agents, m of them with initial p values of 0.5+0.5 100−m

100
,

and the other 100−m starting at 0.5− 0.5 m
100

. These results
can be approximated by our model using P and T , but only
if detailed information about the shape of the distribution at
various times can be provided. For initially symmetric pop-
ulations, we were able to approximate the distribution at any
time with a normal distribution, and achieved good results.
However, no such simple estimation can be made for skewed
distributions.
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Figure 6: Effects of Initial Skewness on Average Conver-
gence Value.

When the constant update rule is used, p̄ will generally fol-
low an exponential relationship with time. However, when
the population nears convergence, the rate of change of p̄ de-
creases. This can be attributed to the increased frequency of
events in which agents must adjust the changes in their p val-
ues so that they still lie in the interval [0, 1].

When the proportional update rule is used, the average p
value is characterized by short intervals of rapid change al-
ternating with long intervals with only minimal oscillations
in p̄ values. During these long intervals, when p̄ is almost
constant, the individual agent p values are polarized to either
endpoint of their domain, [0, 1], and, like the average, only ex-
hibit small oscillations. This phenomenon can be explained
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Figure 7: Effects of Initial Skewness on Average Conver-
gence Time.
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Figure 8: A Typical Simulation Run Using the Proportional
Update Rule.

by the fact that, if an agent’s p value is near 0, several in-
creases in its p value can be offset by only a small number of
decreases, due to the proportionate nature of ∆i(acti). Fig-
ure 8 shows the average population bias over time for a typical
simulation using the proportional update when all agents are
initialized with biases of 0.5. Our model is unable to predict
when these sharp drops in p values will occur.

5 Conclusions and Future Work

We developed a formal model to predict the convergent norms
and the time taken for such norms to emerge in a population
of agents adapting their biases for one of two choices based
on success or failure of coordination in bilateral interactions.
This analysis covered several variations of the initial state of
the society and the bias update rule used by the agents. Our
model predictions for both constant and proportional bias up-
date schemes were validated by empirical results from a large
number of simulations. In addition, we proved that a popu-
lation using one of these two update rules will almost surely
(that is, with 100% probability) converge on one of a small
set of norms.

The analysis presented in this paper establishes a broad
foundation for several types of subsequent work. While the
matrices used to predict convergence statistics were nearly di-
agonal and thus could be scaled to model much larger popu-
lations, it would be ideal if closed-form expressions could be
produced to express convergence statistics in terms of initial
population characteristics.

We would also like to develop a better understanding of
how increasing diversity in the population impacts conver-
gence time. In a similar vein, skewness in the popula-
tion could have unanticipated effects on convergence and we
would prefer to gain insights into those effects through a more
expansive analysis. We would also like to extend our analyses
to other norm-emergence scenarios. Apart from different in-
teraction schemes, we would also explore larger action sets,
more complicated l-way interactions, and different network
topologies.
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