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Abstract

We present design considerations for an auto-
mated meeting scheduling agent that processes meet-
g requests on behalf of its assocrated user. In our
formulation of the meeting scheduling problem, dis-
tributed meeting scheduling agents, one per user, in-
telligently exchange information with each other to
schedule meetings without compromising user-specified
constraints. In this paper, we first enumerate various
strategies we have investigated to focus distributed ne-
gotiation between scheduling agents. Next, we demon-
strate the necessity for such a scheduler to be adap-
twe wn its choice of options for the various strai-
egy dimensions, so that it can perform effectively
over time. In order to build an adaptive scheduler
that can effectively choose from available strategy op-
tions, we develop quantitative performance estimates
of these options using detailed probabilistic analysis.
Results from these analyses are used to provide guide-
lines to choose the most appropriate strateqy combina-
tion given current environmental conditions and local
problem-solving states.

1 Introduction

Our research involves developing automated soft-
ware agents to handle some of the information pro-
cessing needs of humans in organizations. In partic-
ular, we have been working on the design of an au-
tomated meeting scheduling agent that can schedule
meetings on behalf of associated users [4, 6]. The
agents preserve privacy requirements of users, and re-
veal only restricted amount of information about cal-
endar states, as and when required, to schedule meet-
ings with other users. In this paper, we outline the
design of an intelligent meeting scheduling agent that
can adapt its choice of heuristic strategies for nego-
tiation to suit the current problem-solving environ-
ment. Qur design is based on the precise analytical
evaluation of alternative strategy choices. We present
the probabilistic analysis used by agents to choose be-
tween strategy options, and illustrate the benefit of
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adaptive scheduling by using example problem scenar-
10s. Our work promises to provide efficient automated
meeting scheduling capabilities that are not available
with the current top-of-the-line calendar management
software [8].

2 Distributed Meeting Scheduling

The agents in a Distributed Meeting Scheduling
(DMS) system exchange relevant information to build
local schedules that fit into a globally consistent sched-
ule. To facilitate information exchange, the agents
need a common communication protocol for negotiat-
ing over meeting times. For our agents, we have cho-
sen to adapt the multistage negotiation protocol [2],
which is a generalization of the contract net protocol
[7]. In our protocol, each meeting has a particular
agent who is responsible for it, called the host. The
host contacts other attendees of the meeting (who are
called invitees) to announce the meeting, and collects
bids (availability information). This process could be
repeated several times before a mutually acceptable
time interval is found, or it is recognized that no such
time interval exists. Other meetings could be undergo-
ing scheduling concurrently; in general, an agent can
simultaneously be involved in scheduling any number
of meetings, acting as a host for some and an invitee
for others.

How well this protocol performs in efficiently con-
verging on good schedules is strongly impacted by
heuristic strategies about what information to ex-
change and how to model tentatively scheduled meet-
ings. In order to decide what to propose for a meet-
ing, the agents have to search their calendars in a sys-
tematic manner using some appropriate search bias.
Strategies for communication must balance demands
for privacy (which lead to exchanging less information)
with demands for quickly converging on meeting times
(which can be sped up by exchanging more informa-
tion). Strategies for modeling tentatively scheduled
meetings can range from blocking off tentative time(s)
for a meeting unless and until the arrangements fall
through, to ignoring tentative commitments about a
meeting when scheduling other meetings. We have
embarked on research to develop, analyze, and verify
a formal model of DMS to formulate rigorous, quanti-
tative predictions of the performance of the following



types of heuristic strategies:

Search Biases determine the order in which the
calendar space is searched to find acceptable time in-
tervals for a meeting. We have considered linear
early (LE) where agents try to schedule a meeting as
early as possible, and hierarchical (H), where agents
build a temporal abstraction hierarchy over the calen-
dar space. At each node in the hierarchy, agents keep
a record of the number of intervals of different lengths
free below that node in the hierarchy. The calendar
space lends itself to a very natural hierarchy of hours,
days, weeks, etc., and the agents participating in a
meeting can first identify a good week to meet in, then
identify a good day within that week, and finally an
actual interval within that day. Given a meeting of
some particular length to schedule, the host obtains
information about the invitees regarding how many
intervals of that length are open at each node (e.g., at
each week) at the highest level of the hierarchy. The
host uses this information to calculate the probabil-
ity of scheduling the meeting under each of the nodes,
ranks the nodes, elaborates the best one, and proceeds
to repeat the process for the next level of the hierarchy
under the elaborated node.! Backtracking occurs if a
particular portion of the ground level being elaborated
contains no solution to the scheduling problem.

Announcement Strategies determine how a
meeting is announced, and usually involve propos-
ing some number of possible times. We specifically
consider the options called best (where only the best
meeting time from the host’s perspective, ranked by
some heuristic like being the earliest, is communi-
cated) and good (where several times preferred by
the host, 3 by default, are communicated).

Bidding Strategies determine what information
an invitee sends back based on an announcement. We
consider the options called yes no (where an invitee
says yes or no to each proposal sent by the host) and
alternatives (where an invitee proposes other time(s)
when it can meet).

Commitment Strategies are committed
(when a time is proposed by a host or invitee agent,
that agent tentatively blocks it off on its calendar so
no other meetings can be scheduled there) and non-
committed (times are not blocked off until full agree-
ment on a meeting time is reached).

3 Adaptive scheduling

Our analysis of various strategy options [5] show
that no one strategy combination dominates another
over all circumstances. Changing environmental fac-
tors like system load, organization size, etc., can pro-
duce a change in the strategy combination that will
produce the best results on any given performance
metric. If there is a way to predict the best strategy
combination for a given performance metric and given
environmental and system conditions, we would like
our automated scheduler to take advantage of that.

1While some of this information could be obtained indirectly,
we assume in this paper that agents will directly communicate
about the densities of various intervals, with a resulting decrease
in privacy.

Such a scheduler would be adaptive to changes in the
system and the environment, providing us with the
most desirable performance as measured by certain
performance metrics.

In the following, we will first illustrate the benefits
of adaptive scheduling by describing how an adaptive
search bias technique can improve the performance of
a scheduler over a static choice of the search bias. We
then discuss the choice of different announcement, bid-
ding, and commitment strategies. We note that the
different strategy dimensions are not mutually inde-
pendent in that certain options along one dimension
combine more meaningfully with certain options from
another dimension. This leads us to the development
of a step by step procedure of choosing different strat-
egy options given a snapshot of the meeting scheduling
scenario which can be used by an adaptive scheduling
agent every time it attempts to schedule a meeting.

4 Adaptive search bias

We believe that it is to our advantage to build
schedulers that choose between alternative search bi-
ases based on the current context, rather than using
a default option under all circumstances.

For example, if the scheduling agents were all us-
ing the H search bias, their schedules would be evenly
dense, and all parts of the calendars would be equally
likely to schedule a new meeting. At this point, one
can save on the number of iterations by switching to
a LE search bias. The latter would not incur the iter-
ations required by the hierarchical search bias to tra-
verse down the inner nodes of temporal abstraction of
the calendar space, and would focus search on a part
of the space that is just as good as any other portion.

If the LE search bias is used for a while to schedule
meetings, there will be considerable density variations
along the length of the calendar; when a meeting is
being scheduled for a large number of attendees, such
variations can combine to give very different success
probabilities at different parts of the calendar. Ad-
ditionally, if the host is more free than invitees, and
the latter are using a yes_mno bidding strategy, a sav-
ings can be obtained by using the hierarchical search
bias (see Section 4.3 for examples). Hence, after a
while there will be sufficient mismatch between the
schedules of agents to warrant the switch back to the
hierarchical search bias. The selling point of adaptive
search bias is that the scheduling agent can choose
the most appropriate bias for any meeting based on
the current states of the attendee calendars.

To help decide between alternative search bias tech-
niques, the following probabilistic analysis will assume
the availability of the density profile characteristics (or
DPCs, which depict the variation of meeting densi-
ties over the length of agent calendars) for the desired

meeting length for the attendees of the meeting.!

4.1 Scheduling probability with linear
early search bias

In this section, we calculate the expected number

of iterations taken by agents to schedule a meeting

using the linear early search bias. We assume that the

total number of free intervals of any given length is



known for each of the days of the calendar of the agents
attending a meeting. Let possible(l, L) = L—1+1, be
the maximum possible number of intervals of length
!l open on a calendar day of £ hours (this happens
when no meeting has been scheduled on the day). Let
available(i, j,1, L) be the number of intervals of length
! currently free in the jth day of agent ¢’s calendar,
where each day is of length C.

Let us calculate the probability of scheduling the
meeting on the first day (or any arbitrary day). To
simplify the expressions below, we introduce the fol-
lowing notations: K = posszble(l L), A agents num-
bered 1,..., A are the invitees to the meeting, n, =
available(x, 1,1, L) are the number of intervals of de-
sired length open in the zth attendee’s calendar on the
chosen day. The host of the meeting will propose free
intervals from its calendar one at a time (assuming
the best announcement strategy) until an interval is
found which is free in every invitee’s calendar. We will
calculate P;, the probability that exactly ¢ iterations
are required to schedule the meeting. This means that
the ¢th interval proposed was free in every invitee’s cal-
endar and, for all of the previous ¢ — 1 proposals, the
proposed interval was not available in the calendar of
at least for one invitee. Let Pr(¢) denote the probabil-
ity that the ith interval is free on the calendar of every
invitee, and Pr(i) = 1 — Pr(i) denote the probability
that the ¢th interval is occupied in the calendar of at
least one invitee. Now,

P = Pr(i,i—1,...,1)
= Pr(i)x
{1=Pr(i—1]i)} x
{1—Pr(i—2li,i—1)} x

(1= Pr(1i,i=T,.. . 9)).

There are ¢ multiplicative factors in the expression for
P;. The jth factor in the expression, where j > 1, is
of the following form (see [3] for the proof)?:

1—Pr(l)i,i=1,...,i=j +2)
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The denominator of the jth term is the same as the
numerator of the (j—1)th term Vj € {2,...,i}. Hence,
P; 1s equal to the numerator of the last of the ¢ multi-
plicative factors in its expression. The probability that

?In the following and other calculations in this paper, we

assume(z):0,ifb<00rifa<b.

the ith proposal is the first to find the same interval
open in the calendar of all A invitees is thus:
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Using this equation, we can find out the probabil-
ity of the host succeeding in scheduling the meeting
on any of the iterations proposing meeting on the first
day. Suppose the host agent is numbered 0 and it has
ng,1 intervals open on the first day of its calendar. So,
the probability of the host scheduling the meeting on
the first day is P(D1) = > iy P;, where P, is as given
in equation 1. Let the failure of scheduhng the meeting
on the first day be Q(D1) = 1= P(D1). The probabil-
ity that the meeting is scheduled by the ith proposal
on day 2 (requiring a total of ng 1 + i to be proposed)
is Q(D1)* P;. In general, the probability of scheduling
the meeting by the ith proposal on the jth day (requir-

ing a total of ¢ + Zk 1 o, intervals to be proposed)

is given by P; * H] Q(Dy,). This set of probabilities
constitutes a probabhlty mass function for the random
variable corresponding to the number of intervals to
be proposed to schedule the required meeting given
the current states of the calendars of all attendees.
This is identical to the probability mass function of
the random variable corresponding to the number of
iterations taken by the best announcement strategy to
schedule the meeting (since this strategy proposes one
interval per iteration). If the host uses the good an-
nouncement strategy, proposing /N intervals per itera-
tion, the probability of scheduling the meeting in ¢ it-
erations is given by Pr(i, N) = Z;V:;V(i—l)+1 Pr(j,1),
where Pr(j,1) is the probability that the best an-
nouncement strategy required j iterations to schedule
the meeting.

4.2 Scheduling probability with hierar-

chical search bias

In this section, we calculate the expected number
of iterations taken by agents to schedule a meeting
using the hierarchical search bias. Let us assume P
agents (numbered 1, ..., P) are involved in scheduling
a meeting of length [, and they have constructed iden-
tical temporal abstraction hierarchies over the base
calendar space (linear ordering of calendar hours). For
any internal node in the hierarchy, we will calculate
the probability that one or more common intervals
are free in the base space of the calendars under that
node, for every attendee of the meeting.

Let z be the node in question. Since, the hierarchies
formed by the agents are identical, every agent has
a(l, z) intervals of length [ below this node of its ab-
straction hierarchy (calculation of a({, #) is simple; for
now we assume that these invariant numbers are avail-
able from a lookup table). We assume that the host
has also collected the number of intervals of length [
currently free under node z for each of the agents. For
agent 4, let this number be fi({, ).



Let A;,¥i € {1,...,a(l,z)} be the event that the
ith (chronologically) of the a(/, #) intervals is free in
every attendees calendar. The probability that at least
one of the events Ay, ..., Ay ) occurs can be calcu-
lated as follows. Algebraic counting techniques based
on an inclusion-exclusion argument [1] can be used to
show that, for n such events we have:

Pr(A1VAsV...VA)

= Pr(A)+ -+ Pr(Ay)

—Pr(Ai NAs) — - —Pr(Ai NAj) — -

+Pr(A ANAsANA) 4+ -+ Pr(Ai NAj NAg) + - -

(=1 Pr(A A As A A Ay).
(2)

We define p; = Pr(4;),Vi € {1,...,a(l,2)},pi; =
Pr(d; N Aj) Y € {1,.. . a(l,z) — 1},V5 € {i +
1a ey Cl(l, $)}a .. 'apl...a(l,x) = Pr(Al VANCICIVAN Aa(l,x))a
S1 = S iy
Sy = Zi:l,...,a(l,x)—1,j:i+1,...,a(l,x) pipj, ete.

We first calculate Sy, the sum of the probabilities
of all & common intervals:

and

HP ( a(l,z)—k )
o= () I L)
k P a(l, z)
Hi:l fl(la $)
From the above and from Equation 2 we can express

the probability of at least one free interval in each
attendees calendar under node x as:

J

a%)(—l)ﬁl ( all, ) ) - ( H = )

ji=1

Given the density profile characteristics of the at-
tendee agents, we can use Equations 3 and 1 to cal-
culate the probabilities of scheduling the meeting in
any given number of iterations. Since we are consid-
ering finite length calendars, there may be a non-zero
probability of failing to schedule the meeting. In that
case, we have the probability of success for a finite
number of iterations, and a probability of failure. As
the probabilities of success over all iterations do not
add up to 1, it is not a true probability mass func-
tion. We can normalize these probabilities, producing
a probability mass function conditioned upon success
of scheduling the meeting. Once the latter set of prob-
abilities are calculated, we choose the search bias with
smallest expected number of iterations to success.

4.3 Some examples

In the following, we will consider two different sets
of DPCs (see Figure 1). Each set involve a host trying
to schedule a meeting of length [ = 2 hours with two

invitees. All the agents are assumed to be managing
calendars divided into 10 blocks of 5 hours each. We

assume, in the case of the hierarchical search bias, that
the temporal abstraction hierarchy is comprised of cal-
endar hours, which are grouped into these blocks. The
hierarchical negotiation mechanism, used by the host,
first gathers information from the invitees about their
respective calendar densities in each of the blocks, or-
ders these blocks by the probability of successfully
scheduling a meeting in each of the blocks, and nego-
tiates over one block at a time going down the ordered
list. As the first iteration involves exchanging infor-
mation about the internal nodes of the abstraction hi-
erarchy, meetings can be scheduled starting from the
second iteration only.

Assuming meetings cannot straddle blocks, there
are 4 intervals in each block that could have accom-
modated the meeting if the calendars were empty. So,
the constant K in equation 1, and terms a(l, z),Vx €
{1,...,10} in equation 3, are equal to 4. The n, terms
of equation 1, and f;({, z) terms for all the attendees
and for all the blocks 1n equation 3, are obtained from
the DPCs of each agent.

DPCs of meseting attendees
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Figure 1: Some example density profile characteristics
for host and invitee calendars (each calendar has 10
blocks of 5 hours each; desired meeting length is 2).

The first set of DPCs in Figure 1 corresponds to
even density schedules for each of the agents, though
the load on each agent is different. We will use this
DPC to construct two examples, one in which the host
has 1 interval open per block, and another in which
the host has 3 intervals open per block. The second set
of DPCs in Figure 1 presents a more complex scenario
where the DPC curve has a constant value for only one
of the three agents. We will use this set of DPCs to
construct one example. We now present results from
using the the hierarchical search bias and the linear
early search bias with the best and good (proposing
3 intervals per iteration) announcement strategies on
three example cases.



[ Cases | LE(best) | LE(good) | H |

Case 1 2.575 1.294 3.575
Case 2 6.725 2.575 3.575
Case 3 10.68 3.836 2.193

Table 1: Expected number of iterations for scheduling
the given meeting in three example cases using differ-
ent search biases and announcement strategies.

Case 1: The host calendar corresponds to the
curve DPC1 (one interval open per block). The host
using the LE search bias with the best announcement
strategy will end up announcing the open interval from
successive blocks in successive iterations, taking at
most 10 iterations within which it either schedules
or fails at the end. The LE bias with the good an-
nouncement strategy proposes intervals in three dif-
ferent blocks per iteration, and hence requires a max-
imum of 4 iterations. The H search bias spends one
iteration in the internal nodes of the abstraction hier-
archy and then steps through the 10 blocks, one at a
time, and hence requires a maximum of 11 iterations.
The order of the performance of the different strategy
combinations for this case is LE (Good) better than
LE (best) better than H.

Normalized probability mass functions of iterations
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Figure 2: Normalized probability mass function and
probability distribution function with different search
biases for the first example.

Case 2: The host calendar corresponds to the
curve DPC3 (three intervals open per block). The

host using the LE search bias with the best announce-
ment strategy will spend three iterations per block
announcing the three open intervals in 1ts calendar on
any block in successive iterations. It will thus take at
most 30 iterations within which it either schedules or
will fail at the end. The LE bias with the good an-
nouncement strategy requires a maximum of 10 itera-
tions, and the H search bias requires a maximumof 11
iterations. The order of the performance of the differ-
ent strategy combinations for this case is LE (Good)
better than H better than LE (best).
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Figure 3: Normalized probability mass function and
probability distribution function with different search
biases for the second example.

Case 3: This case corresponds to the second set
of DPCs in Figure 1. The host has a varying den-
sity schedule without any simple pattern inherent in
it, one invitee has a front-loaded calendar (as would
be produced by using a linear early type of search
bias) and the other has an evenly loaded calendar (as
would be produced by a hierarchical type of search
bias). The maximum number of iterations taken by
the LE search bias with best and good announcement
strategies are 20 and 7 respectively, while the maxi-
mum number of iterations taken by the H search bias
is 11. The order of the performance of the different
strategy combinations for this case is H better than
LE (Good) better than LE (best). In this scenario,
the LE search biases waste iterations by proposing in-
tervals open in the host on the first two blocks. The
hierarchical search bias starts negotiation at the most
empty part of the joint search space (corresponding
to block number 9), and thus has a very high likeli-
hood of scheduling the meeting in the second iteration



(the first iteration is spent at the internal nodes of the
abstraction hierarchy).
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Figure 4: Normalized probability mass function and
probability distribution function with different search
biases for the third example.

The expected number of iterations taken by the
search biases for each of the cases discussed above are
listed in Table 1. The probability of failure to sched-
ule the above meetings using any of the search biases
1s 0.009 for the first and second cases, and 0.004 for
the third case. The probability mass functions condi-
tioned upon successful scheduling and associated prob-
ability distribution functions for Cases 1, 2, and 3 are
given in Figures 2, 3, and 4 respectively.

Let us now briefly discuss the qualitative character-
istics of the DPCs of the host and invitees that makes
it useful to use one search bias over the other. The hi-
erarchical trades off iterations spent at inner nodes of
the hierarchy with savings obtained by focusing on the
relatively empty part of the joint search space. When
compared to any other search bias on the metric of it-
erations required to schedule a meeting, the deciding
factor becomes whether the savings obtained by focus-
ing search to “greener pastures” can offset the initial
cost incurred. When compared to the LE search bias,
this means whether the host will spend sufficient un-
successful iterations at the start of the calendar. This
would happen if the host has a number of intervals
free early in the calendar to propose that cannot be
used because one or more invitees has its calendar rel-
atively full in this part (as in Case 2). But the sav-
ings obtained by focusing search was not enough when
compared to the LE search bias with the good an-
nouncement strategy. That finally happened in Case

3. More often than not, the hierarchical search bias
will produce fewer expected iterations for cases where
the densities of agent calendars vary and the different
agent calendars look different (we believe these cases
are more frequent in real life). Our analysis shows
that it 1s better to choose search bias on a case by
case basis rather than using a fixed option.

4.4 Interaction between strategies

The different strategy dimensions are not mutually
independent. In order to use the hierarchical search
bias, the corresponding informed negotiation mecha-
nism has to be used by all meeting attendees. The
different announcement and bidding strategy options
can be used only with the linear early search bias.
Different commitment strategies can be used with the
hierarchical negotiation mechanism only when agents
are exchanging information about the ground space
of the calendar. As such, the sequence of strategy
decisions to be made by meeting scheduling agents
consist of choice of search bias followed by choices of
announcement/bidding strategies, and ultimately the
appropriate commitment strategy.

In order to develop the relative merits of different
strategy combinations under different environments,
we define the following characteristics of the environ-
ment and the agent schedules. In this paper, we will
assume boolean values of high (H) and low (L) for
these environmental factors (see Table 2).

Success probability: The probability that a pro-
posed interval will be accepted by all attendees to
a meeting will largely decide the options for various
heuristic strategies. This probability can be calculated
from the DPCs of attendees.

Window of acceptance: When a new meeting
arrives, this factor is measured by the number of possi-
ble starting times for the meeting requested. As more
and more intervals are unsuccessfully negotiated, the
remaining window of acceptance reduces. We will use
the dynamic window of acceptance measure to choose
appropriate strategy options.

Negotiation Density: The number of meetings
being currently negotiated in a given portion of the
calendar 1impacts the likelihood of conflicts between
processing of these meetings. This feature will be used
to choose between different conflict avoidance options.

4.5 Announcement & Bidding Strategies

In this section, we assume that the scheduler has
adopted the linear early search bias, and discuss the
choice of the announcement and bidding strategies. If
the number of iterations were the only metric we are
interested in, we should almost always use the good
announcement strategy. In practice, however, other
performance metrics will be of importance as well,
and we need to consider the effects of other environ-
mental factors to decide on the most appropriate an-
nouncement strategy. After having chosen the linear
early search bias, the scheduler knows the likelihood
of success of scheduling using one iteration. Generally
speaking, it is better to use the good announcement
strategy whenever the negotiation density is low. The
only exception is when the success probability and ac-
ceptance window are low as well. For this case, it is



Success prob. H{H|H|H|L|L|L|L
Acc. window H|H|L|L|H|H|L]|L
Neg. density H|L|H|L|H|L|H|L
Announcement B|G|B|G|B|G|G]|G
Commitment N|C|C|C|N|N|N|C

Table 2: Matrix to choose the most appropriate an-
nouncement (G for good, B for best) and commit-
ment strategy option (C for committed, N for non-
committed) strategy options.

advisable to use best or good option depending on
the relative priority of this meeting compared with
other meetings being negotiated in the same region of
the calendar.

The choice between alternative bidding strategies
can be made based on the same factors as those
used for making an informed announcement strategy
choice. The scheduling agents should use an alter-
natives bidding strategy for conditions leading to a
choice of good announcement strategy. Alternatively,
the scheduling agents should use a yes mo bidding
strategy for conditions leading to a choice of best
announcement strategy. Another factor that deter-
mines expected iterations to convergence when an LE
search bias is used, is the relative availability of the
host with respect to the invitees at the front end of
the window of acceptance of a given meeting. If the
availability of the host is considerably higher than the
most busy invitee, a large savings in iterations can
be obtained when the corresponding invitee uses an
alternatives announcement strategy compared to a
yes_no announcement strategy. This helps the host
to remove intervals from consideration, which it would
have announced unsuccessfully otherwise.

4.6 Commitment Strategy

A scheduler decides on the appropriate commit-
ment strategy after it has made the choice for search
bias and announcement/bidding strategies. Table 2
shows that the deciding factor in the choice of com-
mitment strategy is the success probability of schedul-
ing the meeting using one proposal. An agent should
commit to a proposed interval when the likelihood of
scheduling the meeting with that proposal is high. The
only exceptions are when

1. both window of acceptance and negotiation den-
sity are high (other meetings vying for the same
spot, and there are enough other possibilities to
schedule the current meeting)

2. both window of acceptance and negotiation den-
sity are low (not many possibilities remaining for
this meeting, and few other meetings being con-
sidered for this part of the calendar).

5 Conclusion

We have demonstrated the benefits of adaptive
choice of heuristic strategy combinations by auto-
mated meeting scheduling agents. Our proposed de-
sign for an adaptive meeting scheduling agent is based
on expected performance of strategy combinations,
developed using precise probabilistic analysis. The
use of probabilistic analysis to develop quantitative
estimates of the performance of alternative heuristic
strategies 1s novel within the field of distributed Al
(DAT). As such, our work proposes a new methodol-
ogy to develop and evaluate future DAT systems.

Most distributed scheduling scenarios can be
mapped 1into the distributed meeting scheduling
framework. As such, our techniques can be used on
a broader class of problems if the multi-stage negoti-
ation protocol is applied to solve those problems.

We have not addressed the problems of construct-
ing efficient user interface, calendar browsing software,
encoding all possible user requirements, etc. These
concerns need to be adequately resolved before a work-
ing application can be implemented. We plan to in-
vestigate the incorporation of user preferences within
heuristic strategies as the next step towards the devel-
opment of a functional meeting scheduling system.
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