
On the design of an adaptive meeting scheduler �Sandip Sen Edmund H. DurfeeDept of Mathematical & Computer Sciences Department of EECS,University of Tulsa University of Michigan600 South College Avenue 1101 Beal AvenueTulsa, OK 74104 Ann Arbor, MI 48109sandip@kolkata.mcs.utulsa.edu durfee@engin.umich.eduAbstractWe present design considerations for an auto-mated meeting scheduling agent that processes meet-ing requests on behalf of its associated user. In ourformulation of the meeting scheduling problem, dis-tributed meeting scheduling agents, one per user, in-telligently exchange information with each other toschedule meetings without compromising user-speci�edconstraints. In this paper, we �rst enumerate variousstrategies we have investigated to focus distributed ne-gotiation between scheduling agents. Next, we demon-strate the necessity for such a scheduler to be adap-tive in its choice of options for the various strat-egy dimensions, so that it can perform e�ectivelyover time. In order to build an adaptive schedulerthat can e�ectively choose from available strategy op-tions, we develop quantitative performance estimatesof these options using detailed probabilistic analysis.Results from these analyses are used to provide guide-lines to choose the most appropriate strategy combina-tion given current environmental conditions and localproblem-solving states.1 IntroductionOur research involves developing automated soft-ware agents to handle some of the information pro-cessing needs of humans in organizations. In partic-ular, we have been working on the design of an au-tomated meeting scheduling agent that can schedulemeetings on behalf of associated users [4, 6]. Theagents preserve privacy requirements of users, and re-veal only restricted amount of information about cal-endar states, as and when required, to schedule meet-ings with other users. In this paper, we outline thedesign of an intelligent meeting scheduling agent thatcan adapt its choice of heuristic strategies for nego-tiation to suit the current problem-solving environ-ment. Our design is based on the precise analyticalevaluation of alternative strategy choices. We presentthe probabilistic analysis used by agents to choose be-tween strategy options, and illustrate the bene�t of�This research has been sponsored, in part, by the NationalScience Foundation under Coordination Theory and Collab-oration Technology grant IRI-9015423, and by a grant fromBellcore.

adaptive scheduling by using example problem scenar-ios. Our work promises to provide e�cient automatedmeeting scheduling capabilities that are not availablewith the current top-of-the-line calendar managementsoftware [8].2 Distributed Meeting SchedulingThe agents in a Distributed Meeting Scheduling(DMS) system exchange relevant information to buildlocal schedules that �t into a globally consistent sched-ule. To facilitate information exchange, the agentsneed a common communication protocol for negotiat-ing over meeting times. For our agents, we have cho-sen to adapt the multistage negotiation protocol [2],which is a generalization of the contract net protocol[7]. In our protocol, each meeting has a particularagent who is responsible for it, called the host. Thehost contacts other attendees of the meeting (who arecalled invitees) to announce the meeting, and collectsbids (availability information). This process could berepeated several times before a mutually acceptabletime interval is found, or it is recognized that no suchtime interval exists. Other meetings could be undergo-ing scheduling concurrently; in general, an agent cansimultaneously be involved in scheduling any numberof meetings, acting as a host for some and an inviteefor others.How well this protocol performs in e�ciently con-verging on good schedules is strongly impacted byheuristic strategies about what information to ex-change and how to model tentatively scheduled meet-ings. In order to decide what to propose for a meet-ing, the agents have to search their calendars in a sys-tematic manner using some appropriate search bias.Strategies for communication must balance demandsfor privacy (which lead to exchanging less information)with demands for quickly converging on meeting times(which can be sped up by exchanging more informa-tion). Strategies for modeling tentatively scheduledmeetings can range from blocking o� tentative time(s)for a meeting unless and until the arrangements fallthrough, to ignoring tentative commitments about ameeting when scheduling other meetings. We haveembarked on research to develop, analyze, and verifya formal model of DMS to formulate rigorous, quanti-tative predictions of the performance of the following



types of heuristic strategies:Search Biases determine the order in which thecalendar space is searched to �nd acceptable time in-tervals for a meeting. We have considered linearearly (LE) where agents try to schedule a meeting asearly as possible, and hierarchical (H), where agentsbuild a temporal abstraction hierarchy over the calen-dar space. At each node in the hierarchy, agents keepa record of the number of intervals of di�erent lengthsfree below that node in the hierarchy. The calendarspace lends itself to a very natural hierarchy of hours,days, weeks, etc., and the agents participating in ameeting can �rst identify a good week to meet in, thenidentify a good day within that week, and �nally anactual interval within that day. Given a meeting ofsome particular length to schedule, the host obtainsinformation about the invitees regarding how manyintervals of that length are open at each node (e.g., ateach week) at the highest level of the hierarchy. Thehost uses this information to calculate the probabil-ity of scheduling the meeting under each of the nodes,ranks the nodes, elaborates the best one, and proceedsto repeat the process for the next level of the hierarchyunder the elaborated node.1 Backtracking occurs if aparticular portion of the ground level being elaboratedcontains no solution to the scheduling problem.Announcement Strategies determine how ameeting is announced, and usually involve propos-ing some number of possible times. We speci�callyconsider the options called best (where only the bestmeeting time from the host's perspective, ranked bysome heuristic like being the earliest, is communi-cated) and good (where several times preferred bythe host, 3 by default, are communicated).Bidding Strategies determine what informationan invitee sends back based on an announcement. Weconsider the options called yes no (where an inviteesays yes or no to each proposal sent by the host) andalternatives (where an invitee proposes other time(s)when it can meet).Commitment Strategies are committed(when a time is proposed by a host or invitee agent,that agent tentatively blocks it o� on its calendar sono other meetings can be scheduled there) and non-committed (times are not blocked o� until full agree-ment on a meeting time is reached).3 Adaptive schedulingOur analysis of various strategy options [5] showthat no one strategy combination dominates anotherover all circumstances. Changing environmental fac-tors like system load, organization size, etc., can pro-duce a change in the strategy combination that willproduce the best results on any given performancemetric. If there is a way to predict the best strategycombination for a given performance metric and givenenvironmental and system conditions, we would likeour automated scheduler to take advantage of that.1While some of this informationcould be obtained indirectly,we assume in this paper that agents will directly communicateabout the densities of various intervals, with a resulting decreasein privacy.

Such a scheduler would be adaptive to changes in thesystem and the environment, providing us with themost desirable performance as measured by certainperformance metrics.In the following, we will �rst illustrate the bene�tsof adaptive scheduling by describing how an adaptivesearch bias technique can improve the performance ofa scheduler over a static choice of the search bias. Wethen discuss the choice of di�erent announcement, bid-ding, and commitment strategies. We note that thedi�erent strategy dimensions are not mutually inde-pendent in that certain options along one dimensioncombine more meaningfully with certain options fromanother dimension. This leads us to the developmentof a step by step procedure of choosing di�erent strat-egy options given a snapshot of the meeting schedulingscenario which can be used by an adaptive schedulingagent every time it attempts to schedule a meeting.4 Adaptive search biasWe believe that it is to our advantage to buildschedulers that choose between alternative search bi-ases based on the current context, rather than usinga default option under all circumstances.For example, if the scheduling agents were all us-ing the H search bias, their schedules would be evenlydense, and all parts of the calendars would be equallylikely to schedule a new meeting. At this point, onecan save on the number of iterations by switching toa LE search bias. The latter would not incur the iter-ations required by the hierarchical search bias to tra-verse down the inner nodes of temporal abstraction ofthe calendar space, and would focus search on a partof the space that is just as good as any other portion.If the LE search bias is used for a while to schedulemeetings, there will be considerable density variationsalong the length of the calendar; when a meeting isbeing scheduled for a large number of attendees, suchvariations can combine to give very di�erent successprobabilities at di�erent parts of the calendar. Ad-ditionally, if the host is more free than invitees, andthe latter are using a yes no bidding strategy, a sav-ings can be obtained by using the hierarchical searchbias (see Section 4.3 for examples). Hence, after awhile there will be su�cient mismatch between theschedules of agents to warrant the switch back to thehierarchical search bias. The selling point of adaptivesearch bias is that the scheduling agent can choosethe most appropriate bias for any meeting based onthe current states of the attendee calendars.To help decide between alternative search bias tech-niques, the following probabilistic analysis will assumethe availability of the density pro�le characteristics (orDPCs, which depict the variation of meeting densi-ties over the length of agent calendars) for the desiredmeeting length for the attendees of the meeting.14.1 Scheduling probability with linearearly search biasIn this section, we calculate the expected numberof iterations taken by agents to schedule a meetingusing the linear early search bias. We assume that thetotal number of free intervals of any given length is



known for each of the days of the calendar of the agentsattending a meeting. Let possible(l;L) = L� l+1, bethe maximum possible number of intervals of lengthl open on a calendar day of L hours (this happenswhen no meeting has been scheduled on the day). Letavailable(i; j; l;L) be the number of intervals of lengthl currently free in the jth day of agent i's calendar,where each day is of length L.Let us calculate the probability of scheduling themeeting on the �rst day (or any arbitrary day). Tosimplify the expressions below, we introduce the fol-lowing notations: K = possible(l;L), A agents num-bered 1; : : : ; A are the invitees to the meeting, nx =available(x; 1; l;L) are the number of intervals of de-sired length open in the xth attendee's calendar on thechosen day. The host of the meeting will propose freeintervals from its calendar one at a time (assumingthe best announcement strategy) until an interval isfound which is free in every invitee's calendar. We willcalculate Pi, the probability that exactly i iterationsare required to schedule the meeting. This means thatthe ith interval proposed was free in every invitee's cal-endar and, for all of the previous i � 1 proposals, theproposed interval was not available in the calendar ofat least for one invitee. Let Pr(i) denote the probabil-ity that the ith interval is free on the calendar of everyinvitee, and Pr(i) = 1 � Pr(i) denote the probabilitythat the ith interval is occupied in the calendar of atleast one invitee. Now,Pi = Pr(i; i� 1; : : : ; 1)= Pr(i)�f1� Pr(i� 1ji)g �f1� Pr(i� 2ji; i� 1)g �...f1� Pr(1ji; i� 1; : : : ; 2)g:There are i multiplicative factors in the expression forPi. The jth factor in the expression, where j > 1, isof the following form (see [3] for the proof)2:1� Pr(1ji; i� 1; : : : ; i� j + 2)= Pj�1y=0(�1)y� j � 1y �QAx=1� K � y � 1nx � y � 1 �QAx=1� Knx �Pj�2y=0(�1)y� j � 2y �QAx=1� K � y � 1nx � y � 1 �QAx=1� Knx � :The denominator of the jth term is the same as thenumerator of the (j�1)th term 8j 2 f2; : : : ; ig. Hence,Pi is equal to the numerator of the last of the i multi-plicative factors in its expression. The probability that2In the following and other calculations in this paper, weassume � ab � = 0, if b < 0 or if a < b.

the ith proposal is the �rst to �nd the same intervalopen in the calendar of all A invitees is thus:Pi = i�1Xj=0(�1)j � i� 1j � QAx=1� K � j � 1nx � j � 1 �QAx=1� Knx � :(1)Using this equation, we can �nd out the probabil-ity of the host succeeding in scheduling the meetingon any of the iterations proposing meeting on the �rstday. Suppose the host agent is numbered 0 and it hasn0;1 intervals open on the �rst day of its calendar. So,the probability of the host scheduling the meeting onthe �rst day is P (D1) =Pn0;1i=0 Pi, where Pi is as givenin equation 1. Let the failure of scheduling the meetingon the �rst day be Q(D1) = 1�P (D1). The probabil-ity that the meeting is scheduled by the ith proposalon day 2 (requiring a total of n0;1+ i to be proposed)is Q(D1)�Pi. In general, the probability of schedulingthe meeting by the ith proposal on the jth day (requir-ing a total of i+Pj�1k=1 n0;k intervals to be proposed)is given by Pi �Qj�1k=1Q(Dk). This set of probabilitiesconstitutes a probabilitymass function for the randomvariable corresponding to the number of intervals tobe proposed to schedule the required meeting giventhe current states of the calendars of all attendees.This is identical to the probability mass function ofthe random variable corresponding to the number ofiterations taken by the best announcement strategy toschedule the meeting (since this strategy proposes oneinterval per iteration). If the host uses the good an-nouncement strategy, proposing N intervals per itera-tion, the probability of scheduling the meeting in i it-erations is given by Pr(i; N ) =PN�ij=N(i�1)+1 Pr(j; 1),where Pr(j; 1) is the probability that the best an-nouncement strategy required j iterations to schedulethe meeting.4.2 Scheduling probability with hierar-chical search biasIn this section, we calculate the expected numberof iterations taken by agents to schedule a meetingusing the hierarchical search bias. Let us assume Pagents (numbered 1; : : : ; P ) are involved in schedulinga meeting of length l, and they have constructed iden-tical temporal abstraction hierarchies over the basecalendar space (linear ordering of calendar hours). Forany internal node in the hierarchy, we will calculatethe probability that one or more common intervalsare free in the base space of the calendars under thatnode, for every attendee of the meeting.Let x be the node in question. Since, the hierarchiesformed by the agents are identical, every agent hasa(l; x) intervals of length l below this node of its ab-straction hierarchy (calculation of a(l; x) is simple; fornow we assume that these invariant numbers are avail-able from a lookup table). We assume that the hosthas also collected the number of intervals of length lcurrently free under node x for each of the agents. Foragent i, let this number be fi(l; x).



Let Ai; 8i 2 f1; : : : ; a(l; x)g be the event that theith (chronologically) of the a(l; x) intervals is free inevery attendees calendar. The probability that at leastone of the events A1; : : : ; Aa(l;x) occurs can be calcu-lated as follows. Algebraic counting techniques basedon an inclusion-exclusion argument [1] can be used toshow that, for n such events we have:Pr(A1 _A2 _ : : :_An)= Pr(A1) + � � �+ Pr(An)�Pr(A1 ^A2) � � � � � Pr(Ai ^Aj) � � � �+Pr(A1 ^A2 ^A3) + � � �+ Pr(Ai ^Aj ^Ak) + � � �...�(�1)nPr(A1 ^A2 ^ � � � ^An): (2)We de�ne pi = Pr(Ai); 8i 2 f1; : : : ; a(l; x)g; pij =Pr(Ai ^ Aj); 8i 2 f1; : : : ; a(l; x) � 1g; 8j 2 fi +1; : : : ; a(l; x)g; : : :; p1:::a(l;x) = Pr(A1 ^ � � � ^ Aa(l;x)),and S1 = Pa(l;x)i=1 pi,S2 =Pi=1;:::;a(l;x)�1;j=i+1;:::;a(l;x) pipj, etc.We �rst calculate Sk, the sum of the probabilitiesof all k common intervals:Sk = � a(l; x)k � QPi=1� a(l; x)� kfi(l; x)� k �QPi=1� a(l; x)fi(l; x) � :From the above and from Equation 2 we can expressthe probability of at least one free interval in eachattendees calendar under node x as:a(l;x)Xj=1 (�1)j+1� a(l; x)j � QPi=1� a(l; x)� jfi(l; x)� j �QPi=1� a(l; x)fi(l; x) � :(3)Given the density pro�le characteristics of the at-tendee agents, we can use Equations 3 and 1 to cal-culate the probabilities of scheduling the meeting inany given number of iterations. Since we are consid-ering �nite length calendars, there may be a non-zeroprobability of failing to schedule the meeting. In thatcase, we have the probability of success for a �nitenumber of iterations, and a probability of failure. Asthe probabilities of success over all iterations do notadd up to 1, it is not a true probability mass func-tion. We can normalize these probabilities, producinga probability mass function conditioned upon successof scheduling the meeting. Once the latter set of prob-abilities are calculated, we choose the search bias withsmallest expected number of iterations to success.4.3 Some examplesIn the following, we will consider two di�erent setsof DPCs (see Figure 1). Each set involve a host tryingto schedule a meeting of length l = 2 hours with twoinvitees. All the agents are assumed to be managingcalendars divided into 10 blocks of 5 hours each. We

assume, in the case of the hierarchical search bias, thatthe temporal abstraction hierarchy is comprised of cal-endar hours, which are grouped into these blocks. Thehierarchical negotiation mechanism, used by the host,�rst gathers information from the invitees about theirrespective calendar densities in each of the blocks, or-ders these blocks by the probability of successfullyscheduling a meeting in each of the blocks, and nego-tiates over one block at a time going down the orderedlist. As the �rst iteration involves exchanging infor-mation about the internal nodes of the abstraction hi-erarchy, meetings can be scheduled starting from thesecond iteration only.Assuming meetings cannot straddle blocks, thereare 4 intervals in each block that could have accom-modated the meeting if the calendars were empty. So,the constant K in equation 1, and terms a(l; x); 8x 2f1; : : : ; 10g in equation 3, are equal to 4. The nx termsof equation 1, and fi(l; x) terms for all the attendeesand for all the blocks in equation 3, are obtained fromthe DPCs of each agent.
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Invitee2Figure 1: Some example density pro�le characteristicsfor host and invitee calendars (each calendar has 10blocks of 5 hours each; desired meeting length is 2).The �rst set of DPCs in Figure 1 corresponds toeven density schedules for each of the agents, thoughthe load on each agent is di�erent. We will use thisDPC to construct two examples, one in which the hosthas 1 interval open per block, and another in whichthe host has 3 intervals open per block. The second setof DPCs in Figure 1 presents a more complex scenariowhere the DPC curve has a constant value for only oneof the three agents. We will use this set of DPCs toconstruct one example. We now present results fromusing the the hierarchical search bias and the linearearly search bias with the best and good (proposing3 intervals per iteration) announcement strategies onthree example cases.



Cases LE(best) LE(good) HCase 1 2.575 1.294 3.575Case 2 6.725 2.575 3.575Case 3 10.68 3.836 2.193Table 1: Expected number of iterations for schedulingthe given meeting in three example cases using di�er-ent search biases and announcement strategies.Case 1: The host calendar corresponds to thecurve DPC1 (one interval open per block). The hostusing the LE search bias with the best announcementstrategy will end up announcing the open interval fromsuccessive blocks in successive iterations, taking atmost 10 iterations within which it either schedulesor fails at the end. The LE bias with the good an-nouncement strategy proposes intervals in three dif-ferent blocks per iteration, and hence requires a max-imum of 4 iterations. The H search bias spends oneiteration in the internal nodes of the abstraction hier-archy and then steps through the 10 blocks, one at atime, and hence requires a maximum of 11 iterations.The order of the performance of the di�erent strategycombinations for this case is LE (Good) better thanLE (best) better than H.
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host using the LE search bias with the best announce-ment strategy will spend three iterations per blockannouncing the three open intervals in its calendar onany block in successive iterations. It will thus take atmost 30 iterations within which it either schedules orwill fail at the end. The LE bias with the good an-nouncement strategy requires a maximum of 10 itera-tions, and theH search bias requires a maximumof 11iterations. The order of the performance of the di�er-ent strategy combinations for this case is LE (Good)better than H better than LE (best).
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(the �rst iteration is spent at the internal nodes of theabstraction hierarchy).
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3. More often than not, the hierarchical search biaswill produce fewer expected iterations for cases wherethe densities of agent calendars vary and the di�erentagent calendars look di�erent (we believe these casesare more frequent in real life). Our analysis showsthat it is better to choose search bias on a case bycase basis rather than using a �xed option.4.4 Interaction between strategiesThe di�erent strategy dimensions are not mutuallyindependent. In order to use the hierarchical searchbias, the corresponding informed negotiation mecha-nism has to be used by all meeting attendees. Thedi�erent announcement and bidding strategy optionscan be used only with the linear early search bias.Di�erent commitment strategies can be used with thehierarchical negotiation mechanism only when agentsare exchanging information about the ground spaceof the calendar. As such, the sequence of strategydecisions to be made by meeting scheduling agentsconsist of choice of search bias followed by choices ofannouncement/bidding strategies, and ultimately theappropriate commitment strategy.In order to develop the relative merits of di�erentstrategy combinations under di�erent environments,we de�ne the following characteristics of the environ-ment and the agent schedules. In this paper, we willassume boolean values of high (H) and low (L) forthese environmental factors (see Table 2).Success probability: The probability that a pro-posed interval will be accepted by all attendees toa meeting will largely decide the options for variousheuristic strategies. This probability can be calculatedfrom the DPCs of attendees.Window of acceptance: When a new meetingarrives, this factor is measured by the number of possi-ble starting times for the meeting requested. As moreand more intervals are unsuccessfully negotiated, theremaining window of acceptance reduces. We will usethe dynamic window of acceptance measure to chooseappropriate strategy options.Negotiation Density: The number of meetingsbeing currently negotiated in a given portion of thecalendar impacts the likelihood of conicts betweenprocessing of these meetings. This feature will be usedto choose between di�erent conict avoidance options.4.5 Announcement & Bidding StrategiesIn this section, we assume that the scheduler hasadopted the linear early search bias, and discuss thechoice of the announcement and bidding strategies. Ifthe number of iterations were the only metric we areinterested in, we should almost always use the goodannouncement strategy. In practice, however, otherperformance metrics will be of importance as well,and we need to consider the e�ects of other environ-mental factors to decide on the most appropriate an-nouncement strategy. After having chosen the linearearly search bias, the scheduler knows the likelihoodof success of scheduling using one iteration. Generallyspeaking, it is better to use the good announcementstrategy whenever the negotiation density is low. Theonly exception is when the success probability and ac-ceptance window are low as well. For this case, it is



Success prob. H H H H L L L LAcc. window H H L L H H L LNeg. density H L H L H L H LAnnouncement B G B G B G G GCommitment N C C C N N N CTable 2: Matrix to choose the most appropriate an-nouncement (G for good, B for best) and commit-ment strategy option (C for committed, N for non-committed) strategy options.advisable to use best or good option depending onthe relative priority of this meeting compared withother meetings being negotiated in the same region ofthe calendar.The choice between alternative bidding strategiescan be made based on the same factors as thoseused for making an informed announcement strategychoice. The scheduling agents should use an alter-natives bidding strategy for conditions leading to achoice of good announcement strategy. Alternatively,the scheduling agents should use a yes no biddingstrategy for conditions leading to a choice of bestannouncement strategy. Another factor that deter-mines expected iterations to convergence when an LEsearch bias is used, is the relative availability of thehost with respect to the invitees at the front end ofthe window of acceptance of a given meeting. If theavailability of the host is considerably higher than themost busy invitee, a large savings in iterations canbe obtained when the corresponding invitee uses analternatives announcement strategy compared to ayes no announcement strategy. This helps the hostto remove intervals from consideration, which it wouldhave announced unsuccessfully otherwise.4.6 Commitment StrategyA scheduler decides on the appropriate commit-ment strategy after it has made the choice for searchbias and announcement/bidding strategies. Table 2shows that the deciding factor in the choice of com-mitment strategy is the success probability of schedul-ing the meeting using one proposal. An agent shouldcommit to a proposed interval when the likelihood ofscheduling the meeting with that proposal is high. Theonly exceptions are when1. both window of acceptance and negotiation den-sity are high (other meetings vying for the samespot, and there are enough other possibilities toschedule the current meeting)2. both window of acceptance and negotiation den-sity are low (not many possibilities remaining forthis meeting, and few other meetings being con-sidered for this part of the calendar).

5 ConclusionWe have demonstrated the bene�ts of adaptivechoice of heuristic strategy combinations by auto-mated meeting scheduling agents. Our proposed de-sign for an adaptive meeting scheduling agent is basedon expected performance of strategy combinations,developed using precise probabilistic analysis. Theuse of probabilistic analysis to develop quantitativeestimates of the performance of alternative heuristicstrategies is novel within the �eld of distributed AI(DAI). As such, our work proposes a new methodol-ogy to develop and evaluate future DAI systems.Most distributed scheduling scenarios can bemapped into the distributed meeting schedulingframework. As such, our techniques can be used ona broader class of problems if the multi-stage negoti-ation protocol is applied to solve those problems.We have not addressed the problems of construct-ing e�cient user interface, calendar browsing software,encoding all possible user requirements, etc. Theseconcerns need to be adequately resolved before a work-ing application can be implemented. We plan to in-vestigate the incorporation of user preferences withinheuristic strategies as the next step towards the devel-opment of a functional meeting scheduling system.References[1] K. Bogart. Introductory Combinatorics. Pitman,Boston, MA, 1983.[2] S. E. Conry, R. A. Meyer, and V. R. Lesser. Mul-tistage negotiation in distributed planning. InA. H. Bond and L. Gasser, editors, Readings inDistributed Arti�cial Intelligence, pages 367{384.Morgan Kaufman, 1988.[3] S. Sen. Predicting Tradeo�s in Contract-BasedDistributed Scheduling. PhD thesis, University ofMichigan, October 1993.[4] S. Sen and E. H. Durfee. A formal study of dis-tributed meeting scheduling: Preliminary results.In Proceedings of the ACM Conference on Orga-nizational Computing Systems '91, pages 55{68,November 1991.[5] S. Sen and E. H. Durfee. A formal analysis of com-munication and commitment in distributed meet-ing scheduling. In Working Papers of the 11th In-ternational Workshop on Distributed Arti�cial In-telligence, pages 333{342, February 1992.[6] S. Sen and E. H. Durfee. The e�ects of search biason exibility in distributed scheduling. In Work-ing Papers of the 12th International Workshop onDistributed Arti�cial Intelligence, pages 321{334,May 1993.[7] R. G. Smith. The contract net protocol: High-level communication and control in a distributedproblem solver. IEEE Transactions on Computers,C-29(12):1104{1113, Dec. 1980.[8] E. Taub. Sharing schedules. MacUser, pages 155{162, July 1993.


