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1 Introduction

Researchers in the field of Distributed Artificial Intelli-
gence (DAI) [Bond and Gasser, 1988] have developed
a variety of agent coordination schemes under different
assumptions about agent capabilities and relationships.
Most of these schemes rely on shared knowledge or au-
thority relationships between agents. These kinds of in-
formation may not be available or may be manipulated
by malevolent agents. We have used reinforcement learn-
ing [Barto et al., 1989] as a coordination mechanism that
imposes little cognitive burden on agents and does not
suffer from the above-mentioned shortcomings [Sekaran
and Sen, 1994; Sen et al., 1994].

In this paper, we evaluate a particular reinforce-
ment learning methodology, a genetic algorithm based
machine learning mechanism known as classifier sys-
tems [Holland, 1986) for developing action policies to
optimize environmental feedback. Action policies that
provide a mapping between perceptions and actions can
be used by multiple agents to learn coordination strate-
gies without having to rely on shared information. These
agents are unaware of the capabilities of other agents and
may or may not be cognizant of goals to achieve. We
show that through repeated problem-solving experience,
these agents can develop policies to maximize environ-
mental feedback that can be interpreted as goal achieve-
ment from the viewpoint of an external observer. FEx-
perimental results from a couple of multiagent domains
show that classifier systems can be more effective than
the more widely used Q-learning scheme for multiagent
coordination.

2 Coordination of multiple agents

Multiagent systems are a particular type of DAI system,
in which autonomous intelligent agents inhabit a world
with no global control or globally consistent knowledge.
These agents may still need to coordinate their activities
with others to achieve their own local goals. They could
benefit from receiving information about what others are
doing or plan to do, and from sending them information
to influence what they do.

Almost all of the coordination schemes developed to
date assume explicit or implicit sharing of information.
In the explicit form of information sharing, agents com-
municate partial results [Durfee, 1988], speech acts [Co-

hen and Perrault, 1979], resource availabilities [Smith,
1980], etc. to other agents to facilitate the process of
coordination. In the implicit form of information shar-
ing, agents use knowledge about the capabilities of other
agents [Fox, 1981; Genesereth et al., 1986] to aid local
decision-making.

We believe that the less an agent depends on shared
information, and the more flexible it is to the on-line
arrival of problem-solving and coordination knowledge,
the better it can adapt to changing environments. As
flexibility and adaptability are key aspects of intelligent
and autonomous behavior, we are interested in investi-
gating mechanisms by which agents can acquire and use
coordination knowledge through interactions with its en-
vironment (that includes other agents) without having to
rely on shared information.

In our ongoing research effort to identify such coordi-
nation schemes, we compare the performance of classifier
systems and the widely used Q-learning algorithm on a
resource sharing problem and a robot navigation prob-
lem. We show that classifier systems perform competi-
tively with the Q-learning algorithm [Watkins, 1989] to
develop effective coordination schemes even when multi-
ple agents are learning concurrently.

Previous proposals for using learning techniques to
coordinate multiple agents have mostly relied on using
prior knowledge [Brazdil et al., 1991], or on cooperative
domains with unrestricted information sharing [Sian,
1991].  Even previous work on using reinforcement
learning for coordinating multiple agents [Tan, 1993;
Wei3, 1993] have relied on explicit information sharing.
We, however, concentrate on systems where agents share
no problem-solving knowledge. We show that although
each agent is independently using reinforcement learn-
ing techniques to optimizing its own environmental re-
ward, global coordination between multiple agents can
emerge without explicit or implicit information sharing.
These agents can therefore act independently and au-
tonomously, without being affected by communication
delays (due to other agents being busy) or failure of a
key agent (who controls information exchange or who
has more information), and do not have to be worry
about the reliability of the information received (Do I
believe the information received? Is the communicating
agent an accomplice or an adversary?). The resultant
systems are, therefore, robust and general-purpose. Our



assumptions are similar to that used by Sandholm and
Crites [Sandholm and Crites, 1995], and by Sen, Sekaran
and Hale [Sen et al., 1994]; the individual goals of agents
in the problem domains discussed in this paper are much
more loosely coupled than in their problems.

3 Reinforcement learning

In reinforcement learning problems [Barto et al., 1989]
reactive and adaptive agents are given a description of
the current state and have to choose the next action from
a set of possible actions so as to maximize a scalar re-
iforcement or feedback received after each action. The
learner’s environment can be modeled by a discrete time,
finite state, Markov decision process that can be repre-
sented by a 4-tuple (S, A, P,r) where P : S x S x A —
[0, 1] gives the probability of moving from state s; to ss
on performing action a, and r : S x A — R is a scalar
reward function. Each agent maintains a policy, 7, that
maps the current state into the desirable action(s) to be
performed in that state. The expected value of a dis-
counted sum of future rewards of a policy 7 at a state x

is given by V7T = E{Zt 07'r7 .}, where 7, is the ran-
dom Varlable corresponding to the reward received by
the learning agent ¢ time steps after if starts using the
policy 7 in state s, and 7 is a discount rate (0 <~y < 1).

Various reinforcement learning strategies have been
proposed using which agents can develop a policy to
maximize rewards accumulated over time. For eval-
uating the classifier system paradigm for multiagent
reinforcement learning, we compare it with the Q-
learning [Watkins, 1989] algorithm, which is designed
to find a policy 7* that maximizes V" (s) for all states
s € S. The decision policy is represented by a function,
Q : S x A+ R, which estimates long-term discounted
rewards for each state—action pair. The @ values are
defined as @Q7(s,a) = V;¥"(s), where a;7 denotes the
event sequence of choosing action a at the current state,
followed by choosing actions based on policy 7. The ac-
tion, a, to perform in a state s is chosen such that it 1s
expected to maximize the reward,

Vf* (s) = 21622(@7;* (s,a) for all s € S.

If an action a in state s produces a reinforcement of R
and a transition to state s’, then the corresponding @
value 1s modified as follows:

Q(s,a) — (1-53) Q(s,a)+ 3 (R+7 513,35@(5/""))' (1)

The above update rule is similar to Holland’s bucket-
brigade [Holland, 1986] algorithm in classifier systems
and Sutton’s temporal-difference [Sutton, 1984] learn-
ing scheme. The similarities of Q-learning and classi-
fier systems have been analyzed in [Dorigo and Bersini,
1994].

Classifier systems are rule based systems that learn
by adjusting rule strengths from feedback and by dis-
covering better rules using genetic algorithms. In this
paper, we will use simplified classifier systems where all
possible message action pairs are explicitly stored and
classifiers have one condition and one action. These

assumptions are similar to those made by Dorigo and
Bersini [Dorigo and Bersini, 1994]; we also use their no-
tation to describe a classifier ¢ by (¢;, a;), where ¢; and
a; are respectively the condition and action parts of the
classifier. Si(¢;, a;) gives the strength of classifier ¢ at
time step t. We first describe how the classifier system
performs and then discuss two different feedback distri-
bution schemes, namely the Bucket Brigade algorithm
(BBA), and the Profit Sharing Plan (PSP).

All classifiers are initialized to some default strength.
At each time step of problem solving, an input message
is received from the environment and matched with the
classifier rules to form a matchset, M. One of these
classifiers is chosen to fire and based on its action, a
feedback may be received from the environment. Then
the strengths of the classifier rules are adjusted. This
cycle is repeated for a given number of time steps. A
series of cycles constitute a trial of the classifier system.
In the BBA scheme, when a classifier is chosen to fire,
its strength is increased by the environmental feedback.
But before that, a fraction « of its strength is removed
and added to the strength of the classifier who fired in
the last time cycle. So, if classifier ¢ fires at time step
t, produces external feedback of R, and classifier j fires
at the next time step, the following equations gives the
strength update of classifier ¢:

Sey1(ei,a;) = (1 — ) * S(eg, a;) + ax (R4 Seya(ej, a5)).

We now describe the profit sharing plan (PSP)
strength-updating scheme [Grefenstette, 1988] used in
classifier systems. In this method, problem solving is
divided into episodes in between receipts of external re-
ward. A rule is said to be active in a period if 1t fired
in at least one of the cycles in that episode. At the end
of episode e, the strength of each active rule 7 in that
episode is updated as follows:
ai) = Se(cia

a;) + a* (Re — Se(ei, ai)),

where R, is the external reward received at the end of
the episode. We have experimented with two methods
of choosing a classifier to fire given the matchset. In
the more traditional method, a classifier : € M at time

t is chosen with a probability given by %
We call this fitness proportionate PSP or PSP(FP). In
the other method of action choice, the classifier with the
highest fitness in M is chosen 90% of the time, and a
random classifier from M is chosen in the rest 10% cases
(Mahadevan uses such an action choosing mechanism for
Q-learning in [Mahadevan, 1993]). We call this a semi-
random PSP or PSP(SR).

For the Q-learning algorithm, we stop a run when the
algebraic difference of the policies at the end of neighbor-
ing trials is below a threshold for 10 consecutive trials.
With this convergence criterion, however, the classifier
systems ran too long for us to collect reasonable data.
Instead, every 10th trial, we ran the classifier system
(both with BBA and PSP) with a deterministic action
choice over the entire trial. We stopped a run of the
classifier system if the differences of the total environ-
mental feedback received by the system on neighboring
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deterministic trials were below a small threshold for 10
consecutive deterministic trials.

We study the performance of classifier systems and
Q-learning on two different domains. In the resource
sharing domain, agents receive feedback only at the end
of each trial (delayed), and only one of the agents is
learning (the other agent has a fixed load distribution).
In the robot navigation domain, agents receive feedback
after each step (immediate), and both of the agents learn
concurrently.

4 Resource sharing problem

The resource sharing problem assumes two agents shar-
ing a common resource or channel, with each of them
trying to distribute their load on the system so as to
achieve maximum utility. In our version of the prob-
lem, it is assumed that one agent has already applied
some load distributed over a fixed time period, and the
other agent 1s learning to distribute its load on the sys-
tem without any knowledge of the current distribution.
A maximum load of L can be applied on the system at
any point in time (loads in excess of this do not receive
any utility). Related work on adaptive load balancing
has been reported in [Schaerf et al., 1995].
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Figure 1: Curve depicting the utility received for a given

load

The second agent can use K load-hours of the chan-
nel. If it applies a load of k; load-hours on the system
at time step ¢, when the first agent has applied [; load-
hours, the utility it receives is u(ly, k) = U(max(L, k; +
[))=U(max(L,l;), where U is the utility function in Fig-
ure 1, and L = 10 is the maximum load allowed on the
system. The total feedback it gets at the end of T time
steps is Zthl u(ly, k+). This problem requires the second
agent to distribute its load around the loads imposed by
the first agent in order to obtain maximum utility. The
problem is that the second agent have no direct infor-
mation about the load distribution on the system. This
is a typical situation in reinforcement learning problems
where the agent has to choose its actions based only on
scalar feedback.
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Figure 2: A resource sharing problem.

A single trial consists of an episode of applying loads
until 7" time steps is completed or until the agent has ex-
hausted 1ts load-hours, whichever occurs earlier. Thus,
through consecutive such trials the agent learns to dis-
tribute its load on the system in an optimal fashion.
Figure 2 presents the load distribution used by the first
agent as well as one of several optimal load distributions
for the second agent in the particular problem we have
used for experiments (7' = 10 in this problem).

Since the resource sharing problem produces rewards
only after a series of actions are performed we used the
PSP method of payoff distribution with the classifier sys-
tem. Though BBA can also be used for payoff distribu-
tion in this problem, our initial experiments showed that
PSP performed much better than BBA on this prob-
lem. The parameter values are § = 0.85, v = 0.9 for
Q-learning and a = 0.1 for PSP.

In this set of experiments the fitness-proportionate
PSP did not converge even after 150,000 trials. Exper-
imental results comparing Q-learning and semi-random
PSP, PSP(SR), based classifier systems on the resource
sharing problem is displayed in Figure 3. Results are
averaged over 50 runs of both systems. Though both
methods find the optimal load distribution in some of the
runs, more often than not they settle for a less than opti-
mal, but reasonably good distribution. PSP takes about
twice as long to converge but produces a better load dis-
tribution on the average. The difference in performance
is found to be significant at the 99% confidence level us-
ing a two-sample ¢-procedure. We believe this happens
because all the active rules directly share the feedback
at the end of a trial in PSP. In Q-learning, however,
the external feedback is passed back to policy elements
used early in a trial over successive trials. Interference
with different action sequence sharing the same policy
element (state-action pair) can produce convergence to
sub-optimal solutions.

Typical solutions produced by PSP and Q-learning dif-
fered in one important characteristic. PSP solutions will
save some of its load for the last empty time-slot, whereas
Q-learning solutions use up all the available load before



The resource sharing problem
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Figure 3: Comparison of PSP and Q-learning on the
resource sharing problem.

that. Since PSP is able to utilize the last empty time
slot on the channel, it produces better utility than Q-
learning.

The above results show two things: 1) an agent can
effectively use a classifier system to coordinate its actions
effectively with no knowledge about the actions of the
other agent using the common resource, 2) semi-random
action choice mechanism can be a more effective method
for classifier systems than the commonly used fitness-
proportionate action choice scheme.

5 Robot navigation problem

We designed a problem in which four agents, A, B, C,
and D, are to find the optimal path in a grid world,
from given starting locations to their respective goals,
A’, B',C", and D'. The agents traverse their world using
one of the five available operators: north, south, east,
west, or hold. Figure 4 depicts potential paths that each
of the agents might choose during their learning process.
The goal of the agents is to learn moves that quickly take
them to their respective goal locations without colliding
with other agents.

Each agent receives feedback based on its move: when
it makes a move that takes them towards their goal, they
receive a feedback of 1; when it makes a move that takes
them away from their goal, they receive a feedback of -1;
when it makes a move that results in no change of their
distance from their goal (hold), they receive a feedback
of 0; when 1t makes a move that results in a collision, the
feedback is computed as depicted in Fig 5. All agents
learn at the same time by updating their individual poli-
cies.

Since the robot navigation problem produces rewards
after each time step, we have used the BBA method
of payoff distribution with the classifier system. The
system parameters are § = 0.5, and v = 0.8 for Q-
learning and « = 0.1 for BBA.

Experimental results on the robot navigation domain
comparing Q-learning and a classifier system using BBA
for payoff distribution is displayed in Figure 3. Plots

Figure 4: A robot navigation problem.
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Figure 5: Feedback for agent X when it causes different
types of collisions (given the action of the other agent in
the collision).

show the average number of steps taken by the agents to
reach their goals. Lower values of this parameter means
agents are learning to find more direct paths to their
goals without colliding with each other. Results are av-
eraged over 50 runs for both systems. Q-learning takes
as much as 5 times longer to converge when compared to
BBA. The final number of steps taken by agents using
Q-learning is slightly smaller than the number of steps
taken by agents using BBA. We believe that if we make
the convergence criteria more strict for the BBA | a better
solution can be evolved with more computational effort.

The interesting aspect of this experiment is that all
the agents were learning simultaneously and hence it was
not obvious that they would find good paths. Typical
solutions, however, show that agents stop at the right
positions to let others pass through. This avoids colli-
sions. The paths do contain small detours, and hence
are not optimal.

6 Conclusions

In this paper we have addressed the problem of de-
veloping multiagent coordination strategies with mini-
mal domain knowledge and information sharing between
agents. We have compared classifier system based meth-
ods and Q-learning algorithms, two reinforcement learn-
ing paradigms, to investigate a resource sharing and a
robot navigation problem. Our experiments show that
the classifier based methods perform very competitively
with the Q-learning algorithm, and are able to generate
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Figure 6: Comparison of BBA and Q-learning on the
robot navigation problem.

good solutions to both problems. PSP works well on the
resource sharing problem, where an agent is trying to
adapt to a fixed strategy used by another agent, and
when environmental feedback 1s received infrequently.
Results are particularly encouraging for the robot navi-
gation domain, where all agents are learning simultane-
ously. A classifier system with the BBA payoff distribu-
tion allows agents to coordinate their movements with
others without deviating significantly from the optimal
path from their start to goal locations.

This paper demonstrates that classifier systems can be
used effectively to achieve near-optimal solutions more
quickly than Q-learning, as illustrated by the experi-
ments conducted in the robot navigation task. If we
enforce a more rigid convergence criteria, classifier sys-
tems achieve a better solution than Q-learning through
a larger number of trials, as illustrated by the results
obtained on the resource sharing domain. We believe
however, that either Q-learning or the classifier system
can produce better results in a given domain. Identify-
ing the distinguishing features of domains which allow
one of these schemes to perform better will be a focus of
our future research.

We have also shown that a semi-random choice of ac-
tions can be much more productive than the commonly
used fitness-proportionate choice of actions with the PSP
payoff distribution mechanism. We plan to compare the
BBA mechanism with these two methods of payoff dis-
tribution.

We would also like to investigate the effects of problem
complexity on the number of trials taken for convergence.
On the robot navigation domain, for example, we would
like to vary both the size of the grid as well as the number
of agents moving on the grid to find out the effects on
solution quality and convergence time.

Other planned experiments include using world mod-
els within classifier systems [Booker, 1988] and com-
bining features of BBA and PSP [Grefenstette, 1988]
that would be useful for learning multiagent coordina-
tion strategies.
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