
Multiagent coordination with learning classi�er systemsSandip Sen & Mahendra SekaranDepartment of Mathematical & Computer Sciences,The University of TulsaPhone: (918) 631-2985, FAX: (918) 631-3077e-mail: sandip@kolkata.mcs.utulsa.edu1 IntroductionResearchers in the �eld of Distributed Arti�cial Intelli-gence (DAI) [Bond and Gasser, 1988] have developeda variety of agent coordination schemes under di�erentassumptions about agent capabilities and relationships.Most of these schemes rely on shared knowledge or au-thority relationships between agents. These kinds of in-formation may not be available or may be manipulatedby malevolent agents. We have used reinforcement learn-ing [Barto et al., 1989] as a coordination mechanism thatimposes little cognitive burden on agents and does notsu�er from the above-mentioned shortcomings [Sekaranand Sen, 1994; Sen et al., 1994].In this paper, we evaluate a particular reinforce-ment learning methodology, a genetic algorithm basedmachine learning mechanism known as classi�er sys-tems [Holland, 1986] for developing action policies tooptimize environmental feedback. Action policies thatprovide a mapping between perceptions and actions canbe used by multiple agents to learn coordination strate-gies without having to rely on shared information. Theseagents are unaware of the capabilities of other agents andmay or may not be cognizant of goals to achieve. Weshow that through repeated problem-solving experience,these agents can develop policies to maximize environ-mental feedback that can be interpreted as goal achieve-ment from the viewpoint of an external observer. Ex-perimental results from a couple of multiagent domainsshow that classi�er systems can be more e�ective thanthe more widely used Q-learning scheme for multiagentcoordination.2 Coordination of multiple agentsMultiagent systems are a particular type of DAI system,in which autonomous intelligent agents inhabit a worldwith no global control or globally consistent knowledge.These agents may still need to coordinate their activitieswith others to achieve their own local goals. They couldbene�t from receiving information about what others aredoing or plan to do, and from sending them informationto inuence what they do.Almost all of the coordination schemes developed todate assume explicit or implicit sharing of information.In the explicit form of information sharing, agents com-municate partial results [Durfee, 1988], speech acts [Co-

hen and Perrault, 1979], resource availabilities [Smith,1980], etc. to other agents to facilitate the process ofcoordination. In the implicit form of information shar-ing, agents use knowledge about the capabilities of otheragents [Fox, 1981; Genesereth et al., 1986] to aid localdecision-making.We believe that the less an agent depends on sharedinformation, and the more exible it is to the on-linearrival of problem-solving and coordination knowledge,the better it can adapt to changing environments. Asexibility and adaptability are key aspects of intelligentand autonomous behavior, we are interested in investi-gating mechanisms by which agents can acquire and usecoordination knowledge through interactions with its en-vironment (that includes other agents) without having torely on shared information.In our ongoing research e�ort to identify such coordi-nation schemes, we compare the performance of classi�ersystems and the widely used Q-learning algorithm on aresource sharing problem and a robot navigation prob-lem. We show that classi�er systems perform competi-tively with the Q-learning algorithm [Watkins, 1989] todevelop e�ective coordination schemes even when multi-ple agents are learning concurrently.Previous proposals for using learning techniques tocoordinate multiple agents have mostly relied on usingprior knowledge [Brazdil et al., 1991], or on cooperativedomains with unrestricted information sharing [Sian,1991]. Even previous work on using reinforcementlearning for coordinating multiple agents [Tan, 1993;Wei�, 1993] have relied on explicit information sharing.We, however, concentrate on systems where agents shareno problem-solving knowledge. We show that althougheach agent is independently using reinforcement learn-ing techniques to optimizing its own environmental re-ward, global coordination between multiple agents canemerge without explicit or implicit information sharing.These agents can therefore act independently and au-tonomously, without being a�ected by communicationdelays (due to other agents being busy) or failure of akey agent (who controls information exchange or whohas more information), and do not have to be worryabout the reliability of the information received (Do Ibelieve the information received? Is the communicatingagent an accomplice or an adversary?). The resultantsystems are, therefore, robust and general-purpose. Our



assumptions are similar to that used by Sandholm andCrites [Sandholm and Crites, 1995], and by Sen, Sekaranand Hale [Sen et al., 1994]; the individual goals of agentsin the problem domains discussed in this paper are muchmore loosely coupled than in their problems.3 Reinforcement learningIn reinforcement learning problems [Barto et al., 1989]reactive and adaptive agents are given a description ofthe current state and have to choose the next action froma set of possible actions so as to maximize a scalar re-inforcement or feedback received after each action. Thelearner's environment can be modeled by a discrete time,�nite state, Markov decision process that can be repre-sented by a 4-tuple hS;A; P; ri where P : S � S � A 7![0; 1] gives the probability of moving from state s1 to s2on performing action a, and r : S � A 7! < is a scalarreward function. Each agent maintains a policy, �, thatmaps the current state into the desirable action(s) to beperformed in that state. The expected value of a dis-counted sum of future rewards of a policy � at a state xis given by V � def= EfP1t=0 tr�s;tg, where r�s;t is the ran-dom variable corresponding to the reward received bythe learning agent t time steps after if starts using thepolicy � in state s, and  is a discount rate (0 �  < 1).Various reinforcement learning strategies have beenproposed using which agents can develop a policy tomaximize rewards accumulated over time. For eval-uating the classi�er system paradigm for multiagentreinforcement learning, we compare it with the Q-learning [Watkins, 1989] algorithm, which is designedto �nd a policy �� that maximizes V � (s) for all statess 2 S. The decision policy is represented by a function,Q : S � A 7! <, which estimates long-term discountedrewards for each state{action pair. The Q values arede�ned as Q� (s; a) = V a;� (s), where a;� denotes theevent sequence of choosing action a at the current state,followed by choosing actions based on policy �. The ac-tion, a, to perform in a state s is chosen such that it isexpected to maximize the reward,V �� (s) = maxa2A Q�� (s; a) for all s 2 S:If an action a in state s produces a reinforcement of Rand a transition to state s0, then the corresponding Qvalue is modi�ed as follows:Q(s; a) (1��) Q(s; a)+� (R+ maxa02AQ(s0; a0)): (1)The above update rule is similar to Holland's bucket-brigade [Holland, 1986] algorithm in classi�er systemsand Sutton's temporal-di�erence [Sutton, 1984] learn-ing scheme. The similarities of Q-learning and classi-�er systems have been analyzed in [Dorigo and Bersini,1994].Classi�er systems are rule based systems that learnby adjusting rule strengths from feedback and by dis-covering better rules using genetic algorithms. In thispaper, we will use simpli�ed classi�er systems where allpossible message action pairs are explicitly stored andclassi�ers have one condition and one action. These

assumptions are similar to those made by Dorigo andBersini [Dorigo and Bersini, 1994]; we also use their no-tation to describe a classi�er i by (ci; ai), where ci andai are respectively the condition and action parts of theclassi�er. St(ci; ai) gives the strength of classi�er i attime step t. We �rst describe how the classi�er systemperforms and then discuss two di�erent feedback distri-bution schemes, namely the Bucket Brigade algorithm(BBA), and the Pro�t Sharing Plan (PSP).All classi�ers are initialized to some default strength.At each time step of problem solving, an input messageis received from the environment and matched with theclassi�er rules to form a matchset, M. One of theseclassi�ers is chosen to �re and based on its action, afeedback may be received from the environment. Thenthe strengths of the classi�er rules are adjusted. Thiscycle is repeated for a given number of time steps. Aseries of cycles constitute a trial of the classi�er system.In the BBA scheme, when a classi�er is chosen to �re,its strength is increased by the environmental feedback.But before that, a fraction � of its strength is removedand added to the strength of the classi�er who �red inthe last time cycle. So, if classi�er i �res at time stept, produces external feedback of R, and classi�er j �resat the next time step, the following equations gives thestrength update of classi�er i:St+1(ci; ai) = (1��) �St(ci; ai)+� � (R+ St+1(cj; aj)):We now describe the pro�t sharing plan (PSP)strength-updating scheme [Grefenstette, 1988] used inclassi�er systems. In this method, problem solving isdivided into episodes in between receipts of external re-ward. A rule is said to be active in a period if it �redin at least one of the cycles in that episode. At the endof episode e, the strength of each active rule i in thatepisode is updated as follows:Se+1(ci; ai) = Se(ci; ai) + � � (Re � Se(ci; ai));where Re is the external reward received at the end ofthe episode. We have experimented with two methodsof choosing a classi�er to �re given the matchset. Inthe more traditional method, a classi�er i 2 M at timet is chosen with a probability given by St(ci;ai)Pd2M St(cd;ad) .We call this �tness proportionate PSP or PSP(FP). Inthe other method of action choice, the classi�er with thehighest �tness in M is chosen 90% of the time, and arandom classi�er fromM is chosen in the rest 10% cases(Mahadevan uses such an action choosing mechanism forQ-learning in [Mahadevan, 1993]). We call this a semi-random PSP or PSP(SR).For the Q-learning algorithm, we stop a run when thealgebraic di�erence of the policies at the end of neighbor-ing trials is below a threshold for 10 consecutive trials.With this convergence criterion, however, the classi�ersystems ran too long for us to collect reasonable data.Instead, every 10th trial, we ran the classi�er system(both with BBA and PSP) with a deterministic actionchoice over the entire trial. We stopped a run of theclassi�er system if the di�erences of the total environ-mental feedback received by the system on neighboring



deterministic trials were below a small threshold for 10consecutive deterministic trials.We study the performance of classi�er systems andQ-learning on two di�erent domains. In the resourcesharing domain, agents receive feedback only at the endof each trial (delayed), and only one of the agents islearning (the other agent has a �xed load distribution).In the robot navigation domain, agents receive feedbackafter each step (immediate), and both of the agents learnconcurrently.4 Resource sharing problemThe resource sharing problem assumes two agents shar-ing a common resource or channel, with each of themtrying to distribute their load on the system so as toachieve maximum utility. In our version of the prob-lem, it is assumed that one agent has already appliedsome load distributed over a �xed time period, and theother agent is learning to distribute its load on the sys-tem without any knowledge of the current distribution.A maximum load of L can be applied on the system atany point in time (loads in excess of this do not receiveany utility). Related work on adaptive load balancinghas been reported in [Schaerf et al., 1995].
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Figure 1: Curve depicting the utility received for a givenloadThe second agent can use K load-hours of the chan-nel. If it applies a load of kt load-hours on the systemat time step t, when the �rst agent has applied lt load-hours, the utility it receives is u(lt; kt) = U (max(L; kt+lt))�U (max(L; lt), where U is the utility function in Fig-ure 1, and L = 10 is the maximum load allowed on thesystem. The total feedback it gets at the end of T timesteps isPTt=1 u(lt; kt). This problem requires the secondagent to distribute its load around the loads imposed bythe �rst agent in order to obtain maximum utility. Theproblem is that the second agent have no direct infor-mation about the load distribution on the system. Thisis a typical situation in reinforcement learning problemswhere the agent has to choose its actions based only onscalar feedback.
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Figure 2: A resource sharing problem.A single trial consists of an episode of applying loadsuntil T time steps is completed or until the agent has ex-hausted its load-hours, whichever occurs earlier. Thus,through consecutive such trials the agent learns to dis-tribute its load on the system in an optimal fashion.Figure 2 presents the load distribution used by the �rstagent as well as one of several optimal load distributionsfor the second agent in the particular problem we haveused for experiments (T = 10 in this problem).Since the resource sharing problem produces rewardsonly after a series of actions are performed we used thePSP method of payo� distribution with the classi�er sys-tem. Though BBA can also be used for payo� distribu-tion in this problem, our initial experiments showed thatPSP performed much better than BBA on this prob-lem. The parameter values are � = 0:85,  = 0:9 forQ-learning and � = 0:1 for PSP.In this set of experiments the �tness-proportionatePSP did not converge even after 150,000 trials. Exper-imental results comparing Q-learning and semi-randomPSP, PSP(SR), based classi�er systems on the resourcesharing problem is displayed in Figure 3. Results areaveraged over 50 runs of both systems. Though bothmethods �nd the optimal load distribution in some of theruns, more often than not they settle for a less than opti-mal, but reasonably good distribution. PSP takes abouttwice as long to converge but produces a better load dis-tribution on the average. The di�erence in performanceis found to be signi�cant at the 99% con�dence level us-ing a two-sample t-procedure. We believe this happensbecause all the active rules directly share the feedbackat the end of a trial in PSP. In Q-learning, however,the external feedback is passed back to policy elementsused early in a trial over successive trials. Interferencewith di�erent action sequence sharing the same policyelement (state-action pair) can produce convergence tosub-optimal solutions.Typical solutions produced by PSP and Q-learning dif-fered in one important characteristic. PSP solutions willsave some of its load for the last empty time-slot, whereasQ-learning solutions use up all the available load before
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PSP(SR)Figure 3: Comparison of PSP and Q-learning on theresource sharing problem.that. Since PSP is able to utilize the last empty timeslot on the channel, it produces better utility than Q-learning.The above results show two things: 1) an agent cane�ectively use a classi�er system to coordinate its actionse�ectively with no knowledge about the actions of theother agent using the common resource, 2) semi-randomaction choice mechanism can be a more e�ective methodfor classi�er systems than the commonly used �tness-proportionate action choice scheme.5 Robot navigation problemWe designed a problem in which four agents, A, B, C,and D, are to �nd the optimal path in a grid world,from given starting locations to their respective goals,A0, B0,C 0, and D0. The agents traverse their world usingone of the �ve available operators: north, south, east,west, or hold. Figure 4 depicts potential paths that eachof the agents might choose during their learning process.The goal of the agents is to learn moves that quickly takethem to their respective goal locations without collidingwith other agents.Each agent receives feedback based on its move: whenit makes a move that takes them towards their goal, theyreceive a feedback of 1; when it makes a move that takesthem away from their goal, they receive a feedback of -1;when it makes a move that results in no change of theirdistance from their goal (hold), they receive a feedbackof 0; when it makes a move that results in a collision, thefeedback is computed as depicted in Fig 5. All agentslearn at the same time by updating their individual poli-cies.Since the robot navigation problem produces rewardsafter each time step, we have used the BBA methodof payo� distribution with the classi�er system. Thesystem parameters are � = 0:5, and  = 0:8 for Q-learning and � = 0:1 for BBA.Experimental results on the robot navigation domaincomparing Q-learning and a classi�er system using BBAfor payo� distribution is displayed in Figure 3. Plots

A     B C    D

B’C’D’ A’Figure 4: A robot navigation problem.
X

Y

X

Y

X

 Y

feedback(X) = -10 feedback(X) = -5 feedback(X) = -5Figure 5: Feedback for agent X when it causes di�erenttypes of collisions (given the action of the other agent inthe collision).show the average number of steps taken by the agents toreach their goals. Lower values of this parameter meansagents are learning to �nd more direct paths to theirgoals without colliding with each other. Results are av-eraged over 50 runs for both systems. Q-learning takesas much as 5 times longer to converge when compared toBBA. The �nal number of steps taken by agents usingQ-learning is slightly smaller than the number of stepstaken by agents using BBA. We believe that if we makethe convergence criteria more strict for the BBA, a bettersolution can be evolved with more computational e�ort.The interesting aspect of this experiment is that allthe agents were learning simultaneously and hence it wasnot obvious that they would �nd good paths. Typicalsolutions, however, show that agents stop at the rightpositions to let others pass through. This avoids colli-sions. The paths do contain small detours, and henceare not optimal.6 ConclusionsIn this paper we have addressed the problem of de-veloping multiagent coordination strategies with mini-mal domain knowledge and information sharing betweenagents. We have compared classi�er system based meth-ods and Q-learning algorithms, two reinforcement learn-ing paradigms, to investigate a resource sharing and arobot navigation problem. Our experiments show thatthe classi�er based methods perform very competitivelywith the Q-learning algorithm, and are able to generate
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Figure 6: Comparison of BBA and Q-learning on therobot navigation problem.good solutions to both problems. PSP works well on theresource sharing problem, where an agent is trying toadapt to a �xed strategy used by another agent, andwhen environmental feedback is received infrequently.Results are particularly encouraging for the robot navi-gation domain, where all agents are learning simultane-ously. A classi�er system with the BBA payo� distribu-tion allows agents to coordinate their movements withothers without deviating signi�cantly from the optimalpath from their start to goal locations.This paper demonstrates that classi�er systems can beused e�ectively to achieve near-optimal solutions morequickly than Q-learning, as illustrated by the experi-ments conducted in the robot navigation task. If weenforce a more rigid convergence criteria, classi�er sys-tems achieve a better solution than Q-learning througha larger number of trials, as illustrated by the resultsobtained on the resource sharing domain. We believehowever, that either Q-learning or the classi�er systemcan produce better results in a given domain. Identify-ing the distinguishing features of domains which allowone of these schemes to perform better will be a focus ofour future research.We have also shown that a semi-random choice of ac-tions can be much more productive than the commonlyused �tness-proportionate choice of actions with the PSPpayo� distribution mechanism. We plan to compare theBBA mechanism with these two methods of payo� dis-tribution.We would also like to investigate the e�ects of problemcomplexity on the number of trials taken for convergence.On the robot navigation domain, for example, we wouldlike to vary both the size of the grid as well as the numberof agents moving on the grid to �nd out the e�ects onsolution quality and convergence time.Other planned experiments include using world mod-els within classi�er systems [Booker, 1988] and com-bining features of BBA and PSP [Grefenstette, 1988]that would be useful for learning multiagent coordina-tion strategies.
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