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Abstract Societal norms or conventions help identify one of many appropriate behaviors
during an interaction between agents. The offline study of norms is an active research area
where one can reason about normative systems and include research on designing and enforc-
ing appropriate norms at specification time. In our work, we consider the problem of the
emergence of conventions in a society through distributed adaptation by agents from their
online experiences at run time. The agents are connected to each other within a fixed network
topology and interact over time only with their neighbours in the network. Agents recognize
a social situation involving two agents that must choose one available action from multiple
ones. No default behavior is specified. We study the emergence of system-wide conventions
via the process of social learning where an agent learns to choose one of several available
behaviors by interacting repeatedly with randomly chosen neighbors without considering
the identity of the interacting agent in any particular interaction. While multiagent learning
literature has primarily focused on developing learning mechanisms that produce desired
behavior when two agents repeatedly interact with each other, relatively little work exists in
understanding and characterizing the dynamics and emergence of conventions through social
learning. We experimentally show that social learning always produces conventions for ran-
dom, fully connected and ring networks and study the effect of population size, number of
behavior options, different learning algorithms for behavior adoption, and influence of fixed
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agents on the speed of convention emergence. We also observe and explain the formation of
stable, distinct subconventions and hence the lack of emergence of a global convention when
agents are connected in a scale-free network.

Keywords Norms · Conventions · Emergence

1 Introduction

Norms routinely guide the choice of behaviors in human societies. Conformity to norms
reduces social frictions, relieves cognitive load on humans, and facilitates coordination.
“Everyone conforms, everyone expects others to conform, and everyone has good reason
to conform because conforming is in each person’s best interest when everyone else plans to
conform” [22]. Behaviors suggested by norms can therefore be considered to be in equilib-
rium as there is no incentive for any one individual to defy a norm if everyone else adopts
it.

Norms in human societies range from fashions to tipping, driving etiquette to interaction
protocols. Norms are ingrained in our social milieu and play a pivotal role in all kinds of
business, political, social, and personal choices and interactions. They are self-enforcing: “A
norm exists in a given social setting to the extent that individuals usually act in a certain way
and are often punished when seen not to be acting in this way” [3]. Norms can therefore be
substituted as external correlating signals or influences to promote coordination.

Boella et al. define a normative multiagent system as “a multiagent system organized
by means of mechanisms to represent, communicate, distribute, detect, create, modify, and
enforce norms, and mechanisms to deliberate about norms and detect norm violation and
fulfilment”. They recognize the importance of an interactionist view on normative multiagent
system, i.e. a bottom up view in which a norm emerges without any enforcement, e.g., when
the agents realize it is convenient for them to behave in a certain way. When a norm becomes
established, i.e., when the norm is made explicit, there is a need for deliberating about it.
When the norm has a positive outcome for the society, the norm can be adopted by establishing
it as a rule or a law. In this case, one may reason about ways for enforcing the norm, i.e.,
by providing mechanisms to detect deviations from the norm and by determining possible
actions/costs to punish deviators.

Not all the social norms, however, deal with the same kind of interaction scenarios. We
observe that social norms like greeting (shaking hands, kissing, leaning towards each other,
or a simple “hi!”) pertain to different situations compared to, for example, the social norm of
recycling. We also observe that social norms, though referring to the same concept, are defined
using different terms in the literature, e.g. norms, social laws, conventions, social norms.
In the multi-agent systems literature, several terms have been used for the same concept
(convention, social norm, social law). However, those terms have been used as synonyms,
often without clearly defining, delineating, or distinguishing between them. Considering
norms as regularities in the behavior of agents, Coleman [10] defines two main types of
norms: conventions and essential norms. These terms have been clearly differentiated in [40].
While Conventional norms (i.e. conventions) solve coordination problems where there exist
no conflicts between the individual and the collective interests, as what is desired is that
everyone behaves in the same way, Essential norms solve or ease collective action problems
where there is a conflict between the individual and the collective interests.

In this paper, we study the emergence of conventions in a society of artificial agents through
the repeated interactions between its members. Here, we use the term convention as we do
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not consider any deontic character: we want to study the initial emergence of a collective
behaviour that could be later on recognized as an explicit convention and could take deontic
character. We believe that it is not advisable to decide on such conventions offline [33,42]
(or at specification time). This is because not all the characteristics of the environment are
perfectly known at design time and choosing a particular convention without such critically
relevant specific knowledge could produce ineffective system performance. An online (or run-
time) convention adoption process could provide a better-adapted convention, given ground
realities, as the agents can tailor their decision to the current environment. In addition, the
goals of the agents or the characteristics of the environment may change over time. In such
situations, an offline design would require re-programming the agents, or at least put in place
a mechanism to deliberate whether a change of conventions is required and how to implement
it [34]. This would be not only computationally problematic in complex environment, but
would also be costly and inefficient. Hence, it is important to study mechanisms that lead to
emergence of a convention from online interaction experience.

While these considerations have merited in-depth study of the evolution and economics
of conventions in social situations [14,33,45], our work is motivated by the following char-
acterization by Young [46]: “we may define a convention as an equilibrium that everyone
expects in interactions that have more than one equilibrium”. This observation has particular
significance for the study of conventions in the context of computational agents. Computa-
tional agents often have to coordinate their actions and such interactions can be formulated
as stage games with simultaneous moves made by the players [17]. Such stage games often
have multiple equilibria [25], which makes is a major impediment for achieving coordina-
tion. While focal points1 [30] can be used to disambiguate such choices, they may not be
available in all situations. Conventions can also be thought of as focal points evolved through
learning [46]. Hence, the emergence of conventions via learning from experience in agent
societies promises to be a productive research area that can improve coordination in and
hence functioning of agent societies.

While researchers have studied the emergence of conventions in agent populations, they
typically assume access to significant amount of global knowledge [14,19,45,46]. For exam-
ple, all of these models assume that individual agents can observe sizable fraction of inter-
actions between other agents in the environment. In that case, a convention may emerge as
agents are mimicking the behavior of other agents. Shoham and Tennenholtz [33], however,
provided results when the interactions are private. In particular, they prove that for a special
class of games, a convention will emerge when the agents use a simple learning rule based
solely on their private interactions. Delgado [12] also provided simulation results when the
agents are using this learning rule and when the interactions between them are constrained.
He considers an interaction graph where a vertex corresponds to an agent and an edge (i, j)
represents the possibility of interaction between agent i and agent j . The main result of
this work is simulation results that show that a convention always emerges when using a
specific learning algorithm and that the topology has an effect on the speed of emergence of
a convention.

Many situations involving many agents can be modelled as games where learning algo-
rithms can then be used as decision making mechanisms. As a result, learning to play repeated
games has been an active area of research in multiagent systems. Many learning algorithms
have been designed and compared [1,27,41]. In particular, no single algorithm has been
found to always outperform all the other algorithms. As a consequence, it is not clear that

1 In game theory, a focal point is an equilibrium more likely to be chosen by the players because it seems
special, natural or relevant to them, although other equilibria are equally good.
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all agents would adopt the same learning algorithm in a decentralized environment. To study
convention emergence in a multiagent system, it is then important to consider agents that use
different learning algorithm and that learn from interaction with many different agent types.
We study such scenarios in this paper.

To study the important phenomenon of emergence of conventions via private interactions,
we use the following interaction framework. We consider a population of agents, where, in
each interaction, each agent is paired with another agent randomly selected from the set of
agents it is connected with in a network. Each agent learns from its interactions concurrently
and over repeated interactions with randomly selected neighbors. We refer to this kind of
learning social learning to distinguish from learning in iterated games against the same
opponent [15].

In previous work on learning in repeated games, the opponent is fixed but in our work,
the opponent varies from iteration to iteration. In addition, it is unlikely that all agents, in a
decentralized environment, will all use the same learning algorithm. Even if they did, they
may not use the same set of parameters. It is unclear, a priori, if and how a social convention
will emerge from such a social learning framework. We believe this is a richer and more
realistic scenario for interaction, behavior learning, and convention emergence in artificial
agent societies.

1.1 Our contribution

Our focus is on the early adoption of a convention, which, later on, could receive some
deontic character (what one should do). We are also only concerned with a society of artificial
agents, so we do assume some level of rationality and we do not try to model emergence of
conventions in human societies. This implicitly assumes some common preferences (e.g. all
agents prefer to spend less time than more time at an intersection), but we do not believe
this as a particularly restrictive assumption. If a system designer has not recognized that a
convention could benefit the agents, we want to know (1) whether agents could adapt their
behavior to take advantage of this opportunity and (2) whether the collective behavior is
stable. Our assumption is that agents are able to recognize a social situation and they learn to
adopt a convention that will facilitate coordination or problem solving for that social situation.

Our first contribution is to extend the results of Shoham and Tennenholtz [33] and Del-
gado [12] in our richer and more realistic model of agents society. Another contribution is the
investigation of conditions in which different conventions may emerge in different parts of
the population. This is possible when two or more isolated population groups interact infre-
quently: with significantly more interactions within members of the same group, infrequent
interaction with outsiders is unlikely to have a decisive effect on the convention adopted by
members of a group. Consequently, it is possible that the different groups develop different
conventions. Delgado [12] and Shoham and Tennenholtz [33] did not observe such phenom-
enon. We observed this fact when studying two populations that interacts unfrequently as
well as studying emergence of conventions in one specific agent interconnection topology
(scale free networks).

Our experimental results and concomitant analysis throws light on the dynamics of the
emergence of conventions via social learning with private interactions. We also investigate
a number of key related issues: the effect of population size, number of available actions,
multiple populations with limited inter-population interactions, heterogeneous population
with multiple learning algorithms, effect of non-learners in shaping convention adoption,
conventions for social dilemmas, etc.
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The rest of the paper is organized as follows: in Sect. 2 we review the various related
works and motivate the research presented in this paper; in Sect. 3, we present the simulation
model used for the experiments; experimental results showing that a convention emerges
are presented in Sect. 4, whereas we analyze, in Sect. 5, the special case where multiple
conventions, or subconventions, may emerge in different parts of the population; finally
conclusions and future work are presented in Sect. 6.

2 Related work

The need for effective norms to control agent behaviors is well-recognized in multiagent
societies [7,37]. In particular, norms are key to the efficient functioning of electronic insti-
tutions [16]. Most of the work in multiagent systems on norms, however, has centered on
logic or rule-based specification and enforcement of norms [13,37]. Similar to these research,
the work on normative, game-theoretic approach to norm derivation and enforcement also
assumes centralized authority and knowledge, as well as system level goals [6,7]. While
norms can be established by centralized dictat, a number of real-life norms evolve in a
bottom-up manner, via “the gradual accretion of precedent” [46]. One potential application
where this research can apply is in the decentralized emergence of “language” (or shared
ontology), as it was initially sketched in [21], where authors study how a population of random
agents can emerge with a shared vocabulary wihtout central entities ruling this process.

Some models of emergence of conventions have appeared in the game theory literature.
One common feature is that a social situation is represented by a game. Agents have some pref-
erences between the various outcomes of a given social situation (we will assume that agents
either strictly prefer one outcome over another or they are indifferent between two outcomes).
In our work, since we do not consider deontic character, we chose to use the term conventions,
while many authors use the term norm and in the following, we respected their choice.

To facilitate the modelling process, one can use interval scales to represent the preferences.
When the situation involves two agents and the agents have the choice between p discrete
actions, the game can be represented in a table form such as the one presented in Table 1 for
the case of p = 2 actions. For a game represented by a table R, the rows and the columns
represent the action choices for the “row” and the “column” player respectively. The entry
R(a, b) = (u, v) ∈ R

2 describes the outcome when the “row” player picks action a and the
column player picks action b: the row player obtains a utility of u and the column player a
utility of v. The example of Table 1 models many situations where the agents must coordinate
to receive higher payoffs [33]. If the agents do not take the same action, at least one of the
agent experience a negative utility. When they choose the same action, at least one outcome
brings positive utility to both agents. This generic type of game can model coordination (e.g.
x = y = 1 and u = v = −1) as well as more complex scenarios such as the well known
Prisoners’ Dilemma game (e.g. x = 1, y = −2, u = 3, v = −3).

More complex representations of a situation are possible. For example, Verhagen [38]
used a decision tree to model situations, which allows the computation expected utilities for

Table 1 Social agreement
game [33] (

x, x u, v

v, u y, y

) x, y, u, v �= 0

either x > 0 or y > 0

either u < 0 or v < 0

if x > 0 and y > 0, then x = y.
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the different outcomes. Some learning mechanism will make similar computations as they
are based on maximizing expected utility.

One common assumption is that agent can base their strategy upon the observation of
other agents. Young [45], for example, is not interested in learning by individual agents,
but on agents observing the population and taking decisions based on these observations.
In his model, each agent observes the last m interactions and bases its decision by building
a Markov chain from k random samples selected from these m past interactions. These
k samples correspond to an agent asking/observing k people. Once the agent has taken a
decision, it can die or leave the environment, ensuring that convention emergence is not due
to learning or reputation effect, i.e., the convention emerges by mimicry. Epstein considers a
model where agents are organized in a ring and can observe the behavior of neighbors [14].
The strategy adopted by an agent is the strategy used by the majority of its neighbors. To
gear towards a stronger consensus, the agent will compare the majority decisions of two sets
of neighbors: the first include neighbors situated within a distance of r and the second add
neigbors that live within a distance of r + 1. When the decisions are the same, the agent will
follow it, otherwise, the agent will increase the radius r .

Axelrod [2] used an evolutionary approach: agents “observe each other, and those with
poor performance tend to imitate the strategies of those they see doing better”. Axelrod thus
studies a behavioral approach which requires observation of other agents. One interesting
feature of this work is that to ensure stability, agents can punish agents that do not follow
the norm. We do not need such punishment as the use of a learning mechanism leads to a
rational behavior: unless an agent is exploring, her decision will maximize expected utility.

Walker and Wooldridge performed simulations of norm emergence in two-player coordi-
nation games [42]. No payoff is defined, but an interaction is a ‘success’ when both agents
choose the same strategy and is a ‘failure’ otherwise. The agents record each interaction,
i.e., a pair containing the strategy of both players. Walker and Wooldridge introduce dif-
ferent variants of the following learning rule called simple majority rule. An agent counts
the number of times a given strategy was used by an opponent, and it picks the action with
the maximum count. In the first variant, the memory of an agent is erased when it changes
strategy. In the next two variants, agents can communicate their memory: in the first case,
agents are divided into two groups and they exchange their memory when they interact with
a fellow group member, in the second case, an agent shares interactions only when it has
been ‘successful’ using a particular strategy, and will only share the interactions where the
use of that strategy were successful. They also consider different quotas for the majority rule,
i.e., in a double majority, an agent will change from strategy σ to strategy σ ′ only when the
number of observation of σ ′ is twice the number of observation of σ .

In all these models, an agent may observe the interactions between other agents. In some
other models, agents may even communicate their model of the situation. This is for example
the case in [38] where agents have a model for their own model and learn a model of the
group behavior.

In the model we use in this paper, agents rely exclusively on their own personal experience
to choose a behavior. This is similar to the model of Shoham and Tennenholtz [33]. A norm
is modeled as as an equilibrium of a stochastic game, not necessarily a Nash one (e.g. using a
norm could dictate playing cooperate in the Prisoners’ Dilemma, producing an outcome that
is Pareto optimal even if it is not a Nash equilibrium). They study n–k–g stochastic social
games where n is the set of agents and g is a k-person game. At each time step, k agents are
selected from a uniform distribution over the n agents. Agents learn to play the game without
knowing the identity of the set of agents that also play the game (obliviousness property) and
can use their private history (local property) or histories of other agents (semi-local property).
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This corresponds to our model in the case where all agents are equally likely to interact with
one another. Shoham and Tennenholtz introduce the highest cumulative reward (HCR) rule,
a simple local learning algorithm where an agent plays the action that has the largest total
payoff in its memory over the last m iterations. The paper focuses on n–2–g stochastic games,
which corresponds to the case we are studying. For the class of n–2–g games where g is a
social agreement game as presented in Table 1, they prove that a norm is guaranteed to emerge
if all agents use HCR. Their other contribution is a simulation of the convergence speed of
HCR, studying the effect of variants of the algorithm, e.g., changing the frequency of strategy
update, resetting memory whenever an agent changes strategy, using different memory sizes.

Though we do not provide convergence guarantees in our work, we do provide extensive
simulations showing that a convention emerges most of the time even when individual agents
use different types of learning algorithm. This and other studies described above have consid-
ered that agents interact with randomly selected partners from the entire population. We also
show that a unique convention may not emerge in the population and different conventions
may emerge in different groups in the population when the agent inter-connections form
some specific topologies.

Some other researchers have also considered that the interactions are constrained by an
underlying interconnection topology [12,20]. The learning rules mentioned above can still be
applied in such situations. For example, the HCR rule is also investigated by Kittock [20] in the
context of simple network topologies whereas Delgado [12] considers both HCR and major-
ity rule in the context of complex networks, including scale-free graphs. Recent results show
how the topology of interaction plays a fundamental role in the emergence of convention-like
norms, which authors refer to as the spread of innovation [23]. In practice, computational
agents are connected through specific networks with known topologies, and hence it is nec-
essary that we test the emergence of norms under common agent interconnection topologies.

Different performance criteria have been used to measure the rate, success, and cost
of norm formation from experience. Walker and Wooldridge [42] consider the number of
changes of strategy by one agent: as changing strategy is considered costly, the less number
of changes, the better. Kittock [20], Delgado [12], and Shoham and Tennenholtz [33] evaluate
the speed of emergence measured in terms of the number of time steps before a norm is
established. Both Kittock and Delgado recognizes the emergence of a norm when 90 % of
the agents use the same strategy. Shoham and Tennenholtz recognizes emergence only when
a norm is unanimously adopted, i.e., all agents use the same strategy.

Trying to provide agents with other mechanisms, Urbano et al. [36] investigated how a
new strategy update rule (Recruitment based on Force with Reinforcement), which promotes
a dynamic creation of a hierarchy, speeds up the convention emergence. Their proposed
strategy update rule functions by providing agents with a measure of force that increases
with every successful interaction, and in case of unsuccessful interactions, the agent with
the lower force copies the strategy and force of the winner. We find this function similar
to the SLACER algorithm [18]. Authors prove the efficiency of their new strategy update
rule on different topologies: regular graphs, an unconventional implementation of a random
graph with uniform degree distribution, scale-free (developed following the Albert–Barabasi
model), and Small World (constructed using the Watts–Strogatz model) networks. However,
convergence rate is still fixed to 90 %. Their results are in concordance with those obtained by
Kittock in [20] where he proved the efficiency of trees structures, that are those dynamically
created with the concept of force.

We use agents that use multiagent reinforcement learning algorithms [28,35] to adapt
their behavior based on their interactions with other agents in the society. Most multiagent
reinforcement learning literature involve the same two agents repeatedly playing a stage
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game and the goal is to learn policies to reach preferred equilibrium [29]. Another line of
research considers a large population of n agents learning to play a cooperative n-player game
where the reward of each individual agent depends on the joint action of all the agents in the
population [44]. The goal of the learning agent is to maximize an objective function for the
entire population, the world utility. The social learning framework we use to study convention
emergence in a population is distinct from both of these lines of research. We are considering
a potentially large population of learning agents. At each time step, however, each agent
interacts with a single agent, chosen at random from its neighbors in the interconnection
graph. The payoff received by an agent for a time step only depends on this interaction, and
is independent of the behavior of any other agent. In addition, the opponent, whose identity
is not observed, is likely to be different in different interactions. It is not clear a priori if the
learners will converge to stable, useful policies in this situation, but our results confirm that
conventions indeed emerge through such social learning!

3 Social learning framework

We assume that agents have higher level goals. When they try to achieve these goals, they
may have to interact with the other agents present in the environment (maybe robots are about
to meet on the road or arrive together at the same door). Conventions improve efficiency as
agents would not require explicit communication to deal with these specific situations. In the
following, the conventions are implicit: agents adopt a personal stable behaviour that can be
seen as a convention at the macroscopic level. It is possible that agents could reason about
their own behavior later on and discover that they are using a convention and that they could
make it explicit. But in this paper, we only deal with the early choice of a specific behavior.

In the following, we present our framework to study the emergence of conventions in a
society of interacting learning agents. We use a normal-form game to represent a social situa-
tion between two agents. We also assume that agents are located in a fixed interaction topology
that constrains their interactions. We use an interaction protocol in which, at each iteration,
an agent meets another randomly chosen agent from its neighbors in the interconnection
graph. We assume that interacting agents do not learn separate behaviors for interacting with
different agents in the population. For a large population, it would take a long time to learn
and it would not be efficient in an open environments where agents can enter and leave the
system over time. We assume that agents are able to recognize a type of social interaction
and are able to access past experience with other agents. Using this data, they use one of the
several learning algorithms to adapt their behavior based on interaction experience.

It is out of the scope of this paper to discuss the semantics associated to the definition of
a conventions. For example, if a behaviour is explicitly defined as a convention, this does
have an effect on the compliance by humans. In this work we focus on the initial choice of
a behaviour and we analyze the effect of the social learning and the topological distribution
of agents on the emergence of conventions.

3.1 Modeling a social interaction

We consider a population N of interacting agents. In theory, a convention could involve an
interaction between many agents at the same time, but in practice, many conventions prescribe
the expected behavior between two agents, e.g., which hand to extend in greeting or which
side of the road to drive on. Consequently, we restrict our study to the case of bilateral
interactions. One specific example of social situation for convention emergence that we use
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as a running example is that of learning “rules of the road”. For example, we will consider two
representative convention emergence scenarios: (a) which side of the road to drive on, and (b)
who yields if two drivers simultaneously arrive at an intersection from neighboring roads2.

The first assumption is that an agent is able to abstract a situation and recognize a specific
type of interaction. Two agents may have symmetrical view of the interaction (e.g., in the
case of choosing which side of the road to drive on) or different one (e.g., in the intersection
problem, one driver sees a car on its left and the other sees a car on its right). For our definition
of a social interaction, we focus on one viewpoint and each agent plays a specific role: first
role (or row role) and second (or column) role. Of course, we consider that each agent can
experience both roles. The agent has to select an action in the set Ar when she has the row
role (respectively in the set Ac for the column role). We use a normal-form game to model
the preferences between the different outcomes of the interaction. Each agent models the
situation with a matrix Gi of size |Ar | × Ac|. We now formally define a social interaction
and its outcome.

Definition 1 (Social interaction) A social (bilateral) interaction is a tuple 〈N , Ar , Ac,

(Gi )i∈N 〉 where Ar (resp Ac) is the set of actions available to the row role (resp. the column
role) and Gi is the payoff matrix of agent i such that:

– agent i gets Gi (ar , ac) when i is the row agent and chooses action ar and the other agent
is the column agent that chooses ac.

– agent i gets Gi (ar , ac) when i is the column agent and chooses action ac and the other
agent is the row agent that chooses ar .

We assume that all agents have a similar understanding of the social situation: all the agents
share the same ordinal preference over the different outcomes of the game, but they may have
different cardinal preferences. In the intersection example, this means that all agents prefer to
be the one that does not stop. This assumption excludes from consideration situations where
agents that have different preferences between the outcomes (e.g. a risk averse agent may
prefer the outcome where she yields and the other agent goes). Since our goal is to model
convention emergence in artificial agents societies, we believe this assumption is not a severe
restriction. Note however that since we use cardinal utility, we allow the actual payoffs to
differ from agent to agent, and we allow indifference: if some agents strictly prefer outcome
a over outcome b, then no agent strictly prefer b over a, but some may be indifferent over
them. In most experiments though, we have used the same game for all the agents.

A possible pair of payoff matrices for the intersection problem is presented in Table 2.
While each player has the incentive of not yielding, myopic decisions by both can lead to
undesirable accidents. Both drivers yielding, however, also creates inefficiency. When one
player “go” and the other “yields”, the player that yields gets a lesser payoff since it is losing
some time compared to the other player. The players know whether they are playing as a row
or a column player: the row player sees a car on its right, and the column player sees a car on
its left. The action choices for the row player are to go (G) or yield to the car on the right (YR),
and they are go (G) or yield to the car on the left (YL ) for the column player. In the table, we
present the matrix for two agents i and j . The utility for agent j after having an accident is
much lower than for agent i (maybe it values its car much more). They have the same utility
for going when the other yield, but agent i values more, due to different intrinsic biases, the
act of yielding when the other goes. Agents can also sample their cardinal representation

2 It might seem that “rules of the road” are always fixed by authority, but historical records show that “Society
often converges on a convention first by an informal process of accretion; later it is codified into law” [46].
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Table 2 Stage games for two
agents i and j corresponding to
an intersection problem

G YL

agent i

G −1 3

YR 2 1

agent j

G −1 3

YR 1 1

G −1 γ

YR β α

distribution of games

α = rand({0, 1})+ rand([0, 1])
β = α + 2 ∗ rand([0, 1])
γ = β + rand([0, 1])
rand([0, 1]) draws a real from

the uniform distribution on the

interval [0, 1]
rand({0, 1}) draws an integer from

the uniform distribution on the

set{0, 1}

Table 3 Stage games for two
agents i and j corresponding to
choosing which side of the road
to drive on, a coordination game

L R

agent i

L 4 −1

R −1 4

agent j

L 2 −10

R −10 2

from the distribution of games described in the matrix on the right of Table 2. Of course,
many other distributions satisfy the ordinal preferences. Note that the expected payoff of an
agent that draws her preferences from this matrix is the one of agent i .

The payoff matrices for the problem of choosing which side of the road to drive on is
presented in Table 3. It is an example of coordination: if both agents choose the same side
(from their point of view), they safely continue on their route; otherwise, they risk a frontal
crash. In the shown payoff matrices, agent j fears a crash more than agent i , again due to
differing intrinsic bias, with a much higher penalty.

Finally, in this paper, we will assume that an interaction is private. In the example of the
intersection, an agent that is near the intersection could potentially observe how the agents
interact, but we will assume this is not the case. Our goal in this paper is to show that only
the information from personal interactions is sufficient for a convention to emerge.

3.2 Interconnection topology

Agents are connected by a interconnection graph G of a fixed topology that restricts their
interactions only with their direct neighbors. Such physical or spatial interaction constraints
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or biases have been well-recognized in the social sciences [26] and, more recently, in the mul-
tiagent systems literature [31]. More pertinently, such interaction constraints have also been
used in the context of convention emergence [12]. We use the following agent interconnection
topologies in our experiments:

Fully connected networks: In this topology, each agent is directly connected with all
other agents, i.e., there is no constraints on the interaction between any two agents.
One-dimensional lattice with neighborhood size k: This topology provides a structure
in which agents are connected with their k nearest neighbors. Different values of the
neighborhood size, k, produces different network structures; for example, when k = 2
the network will have a ring structure, as in Fig. 1b, and agents will only be connected
with their direct neighbors on the left and right. On the other hand, when k = |N |, the
network is a fully connected network, as in Fig 1a, where each agent is connected with
all other agents.
Scale-free networks: In this topology, the number of connections k originating from a
given node exhibits a power law distribution P(k) ≈ k−γ where γ is typically in the
range 2 < γ < 3. As a result, few agents have many connections, and many agents
have few connection. The internet or the citation networks are commonly cited example
networks that have properties of scale-free networks. The diameter (average minimum
distance between pairs of nodes) of such networks is significantly smaller than the one-
dimensional lattice. We generated scale-free networks using the algorithm proposed by
Barabasi and Albert [5], with mo = 2, m = 1, p = 1 and q = 0. These parameters tune
the generation of the scale free network, starting with 2 nodes (because the value of mo),
adding one node (because the value of m) each iteracion (because the value of p) and not
rewiring any link (because the value of q).

For the intersection problem, two agents that live relatively close to each other should be
connected, as they are likely to meet each other at an intersection. Somebody that lives far
away is much less likely to encounter the first two agents.

3.3 Interaction protocol

So far, we have a population N of n = |N | agents located in a graph G that faces a social
situation involving two roles, with their corresponding action set Ar , Ac, and each agent i
models the social situation with a game Gi . Hence, we represent the social situation as a
tuple 〈N , G , Ar , Ac, G1, . . . , Gn〉.

(a) (b) (c)

Fig. 1 Underlying topologies. a Fully connected network. b Ring network or one-dimensional lattice with
neighborhood size 2. c Scale-free network
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The simulation of the system progresses in discrete, synchronous steps. At each iteration,
many distinct pairs of agent are randomly generated. To make a pair, an agent is first chosen
from the set of agents that has not already been selected, and is paired with a randomly
selected neighbor that has not yet been selected. This selection process is iterated until no
more pairs can be formed, i.e., when there are no more neighbor agents that have not been
selected. Algorithm 1 provides a precise description of this protocol.

Input: N : set of agents
G ⊆ N × N : symmetric relation modeling neighbours

for a fixed number of epoch do
A← N //Initialize the available agents with the entire population
repeat

randomly select an agent from the available agents: i ∈ A;
randomly select a neighbor of i that is available: j ∈ A ∪ { j | (i, j) ∈ G };
remove i and j from the set of available agents: A = A \ {i, j};
With probability 1

2 draw (prow, pcol) = (i, j), else draw (prow, pcol) = ( j, i) ;
let prow to select an action r in Ar ;
let pcol to select an action c in Ac;
send the joint action (r, c) to both prow and pcol for policy update;

until no pair of agents is available: �(i, j) ∈ A2 | (i, j) ∈ G ;

Algorithm 1: Interaction protocol.

In the case of a fully connected graph, this algorithm will produce N
2 pairs at each iteration,

and all the agents will learn at the same speed. However, when agents do not have the same
number of connections, the agents that have more neighbors are more likely to experience
an interaction at each iteration. This selection imbalance introduces a bias: agents with more
connections will accumulate more experience and will learn faster than agents with a small
number of connections. Because of the topology of the graph, agents with many connections
will also have a greater influence on others. In our setting, they are likely to learn faster and
set the trends for neighboring agents that have few connections.

To recap, some agents may not have an interaction during an epoch in our protocol as
all their neighbours are no longer available. Note that one could study some variants of the
protocol for guaranteeing that all agents interact at least once at each epoch. For example,
one could allow one agent to have multiple interactions during the same epoch, in which case
one can make the choice to update the learning algorithm once or after every interaction. We
will not study these variants in this paper.

3.4 Convention

The behavior of an agent in repeated play of a bilateral stage game is characterized by its
actions when it plays respectively the row and the column role. More formally, given a social
interaction 〈N , G , Ar , Ac, G1, . . . , Gn〉, the behavior of an agent i is a pair (r i , ci ) that
consists of a pure strategy r i ∈ Ar for the row role and a pure strategy ci ∈ Ac for the
column role (the strategies are the actions available to the agents). A convention corresponds
to an equilibrium strategy profile for all pairs of agents in the population:

Definition 2 (convention) For a social situation 〈N , G , Ar , Ac, G1, . . . , Gn〉, we say that
the population uses a convention when for all pairs of agents (i, j), we have both that (r i , c j )
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is an equilibrium for the game (Gi , G ′j ) and (r j , ci ) is an equilibrium for the game (G ′i , G j )

where G ′ is the transpose of G.

Not all equilibria are conventions, and in the following, we will consider that a convention
is a pure strategy Nash equilibrium. The use of a Nash equilibrium ensures that the equilibrium
is stable: knowing that other agents are following the convention, a given agent is incentivized
to follow it as well. We consider only pure strategies as, in practice, conventions are pure
strategies.

When a game possesses a unique Nash equilibrium in pure strategies, rational agents
should play this strategy. But this is not an interesting situation as there is no other option
attractive to rational agents. In the rest of the paper, we will consider that the games Gi

used by the agents have multiple Nash equilibrium in pure strategies. In the example of the
intersection problem from Table 2, ideally, we would like conventions like “yield to the driver
on the x”, x being either left or right, which serves all drivers in the long run. Hence, the
dilemma is resolved if each member of the population learns to “yield” as a row (column)
player and “go” as a column (row) player. Note that for a social convention to evolve, all
agents in the population has to learn any one of the following policy pairs: (a) (row:G, col:YL ),
i.e., yield to the car on the left, or (b) (row:YR , col:G), i.e., yield to the car on the right.

3.5 Learning algorithms

We assume that the basic decision making mechanism of an agent is a learning mechanism.
This allows the agents to adapt their behaviors to their current environment and reduces the
need for the system designer to specify precise parameters for each environment. In this paper,
we will further assume that agents try to learn a behavior at the level of a social interaction.
For example, an agent does not try to learn a behaviour that depends on the specific agent she
interacts with. If an agent fails to learn an appropriate behavior at this level (not all situations
may be solved by a normative behaviour), we would assume that the agent would refine her
model of the situation (e.g. consider different sub-situations or learn some exceptions). Then,
the agent would be able to recognize a given situation and use the appropriate data to make
a decision. Discussion of recognizing situations falls outside of the scope of this paper and
we will concentrate on a single social situation.

With the social learning framework, there is no theoretical guarantee that a convention
does emerge and stabilize. The goal of the agents is not to learn or discover a convention.
Rather, their goal, as rational agents, is to choose decisions to maximize their expected utility.
We wanted to test wether it was possible for learners to choose a correct behaviour, and we
chose reinforcement learning as our tool for decision making. Over the interactions, the
agents learn to expect others to behave in a certain way.

We are studying the emergence of a convention in a population of interconnected inter-
acting agents. Each agent uses a learning algorithm to learn, from accumulated experience,
how to behave in each role of the social situation. We will at first assume that the agents do
not have any initial bias towards a particular equilibrium. We want to observe whether the
population is able to learn the same behavior, i.e., whether, in the long run, the population
adopts a convention.

To learn a useful behavior, an agent needs to first explore its options and subsequently
exploit its accumulated knowledge. Even when the behavior of other agents appears pre-
dictable, an agent will need to explore periodically to ensure that it is not using a sub-optimal
strategy. It is also important in case of a change in the environment or if they change envi-
ronments. This is particularly important for open and dynamic agent societies that are of
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interest to us and to a large percentage of researchers in the multiagent systems community.
Consequently, when agents are learning, we cannot expect to observe a point in time subse-
quent to which all agents will always choose the same strategy. To identify the emergence of
a convention, we will use the following definition:

Definition 3 (Convention emergence) For a social situation 〈N , G , Ar , Ac, G1, . . . , Gn〉, A
convention has emerged when the strategy profile (r, c) ∈ Ar ×Ac is played by 95 % of the
population in a given iteration.

This definition is similar to the ones from [33], and from [12,20] (though in the latest the
convergence rate used in the experiments is 90 %). One could achieve better performances if
agents slowly reduces, and ultimately stops, exploration. We chose not to do so to prove that
the results do not occur because of a special exploitation strategy.

Note that each agent must learn how to behave for each role of the social situation. In
this paper, we will assume that both roles are learnt independently. Of course, this issue is
relevant for interactions that are not symmetrical (e.g. the intersection problem: one driver
sees a car on its left, the other driver sees a car on its right). For symmetric problem, we
would simply need a single learning algorithm, but, as we discuss now, we can also learn it
with two learning algorithms.

Learning independent behaviour for each role has important implications when a popula-
tion contains only two agents: combinations of different Nash equilibrium may also emerge.
For example, for the example intersection problem and for a population of two agents, it
can be the case that one learner learns to “go” both as row and column player and the other
player learns to yield in both situations (if the agent that goes is an ambulance, this would be
the right behavior to learn). Although not “fair”, this situation is possible in our framework
since each agent independently learns to play as a row and a column player. But one could
not refer to this process as social learning when only two agents are present.

When a third agent is introduced, as the agents do not know the identity of the opponents,
no agent can any longer benefit from always choosing “go”. This is because all other agents
must always “yield” to the “go” agent, and then those agents will receive relatively poor utility
when playing each other. As a result, they will also learn to “go” sometimes. To optimize
performance they will have to learn to settle to a convention which everyone else also follows.

We use three different learning algorithms that are well-known in the learning in games
and multiagent learning literature:

Fictitious play (FP): FP is the basic learning approach widely studied in the game theory
literature [15]. The player keeps a frequency count of its opponent’s decisions from a
history of past moves and assumes that the opponent is playing a mixed strategy rep-
resented by this frequency distribution. It then chooses a best response to that mixed
strategy, with the goal of maximizing expected payoff. This player models its opponent’s
behavior and tries to respond optimally. FP learns to respond optimally to an opponent
playing a stationary strategy. Note that in our framework, the opponent is always chang-
ing, hence the history of the agent using FP and its current opponent’s behavior may
differ. Convergence is not guaranteed in such an environment.
Q-learning [43] with ε-greedy exploration: Q-learning has been widely used in single
and multiagent systems, but converges only to optimal pure strategies is guaranteed only
in a single-agent setting. This algorithm has been developed to learn an optimal policy
in a Markov decision process. We use the ε-greedy exploration scheme: with probability
1− ε the agent follows the recommendation of Q-learning, but with a probability ε, the
agent takes an action at random. Again, there is no guarantee of convergence in our social
learning environment.
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Win or learn fast-policy hill climbing (WoLF-PHC) [9]: The idea behind WoLF is to
quickly adapt when losing but be cautious when winning. WoLF extends policy hill
climbing, which itself extends Q-learning by adding the ability to learn mixed strategies.
Though WoLF is guaranteed to converge to a Nash equilibrium in repeated play of a
2-person, 2-actions game against a given opponent, it is not clear whether convergence
is guaranteed in social learning.

Though there are other competitive multiagent reinforcement learning algorithms (e.g.
GIGA-WoLF [8], M-Qubed [11], CJAL [4], etc.), we believe the set of algorithms we used
produces representative results for convention emergence through social learning.

4 Experimental results: emergence of a convention

Previous research has shown that a convention emerges in a society of adaptive agents, but
they assumed that all agents were using the same algorithm. We now provide new evidences
of convention emergence using our more realistic framework of social learning. We study
the emergence of conventions under different settings: in different games, with different
population sizes and number of actions. We also study the effect of the learning algorithms
used and the effect of fixed agents that cannot (or do not want to) learn. In the first set of
results, we will assume that the agents are connected through a complete graph3. In the last
subsection, we will assume that agents are connected using a one-dimensional lattice.

4.1 Example of a social dilemma

One typical example of the use of convention is to resolve social dilemmas. A straightforward
example of this is when two drivers arrive at an intersection simultaneously from neighboring
streets (See Sect. 3.1). For this experiments, all agents use the game of agent i in Table 1.

Our experimental results show that a uniform convention always emerges in a population
of three or more agents. For example, in a population of 200 agents using WoLF with ε-
greedy exploration: the agent chooses to follow the action recommended by WoLF with a
probability of 1− ε, otherwise, it draws an action from a uniform distribution. We ran 1, 000
runs, and we observed that the population converged to the “yield to the left” convention 506
times, and “yield to the right” convention 494 times. We present the averaged dynamics of the
payoffs and the frequency of the joint action during learning in Fig. 2. From the dynamics we
can see that at first the agents avoid the collision and prefer to yield. Then, one agent notice
that it can exploit this situation by choosing to “go” as the other one is yielding. Depending
on who notices this first, the population converges to one convention or the other. Note that
the plot in Fig. 2 is averaged over all the runs, which explains why the (G, YL) and (YR, G)

appear almost 50 % of the time. The presence of the other joint-actions is due to the ε-greedy
exploration. At the end of the simulation, we observe that the two norms occurs 48.5 and
47.4 % of the time respectively and the other two joint action occur about 2 % of the time,
which is in accordance with playing a fixed pure strategy 1 − ε = 0.96 of the time and
choosing randomly an action the rest of the time4.

3 These results were published in [32].
4 If the norm (G,YL ) has emerged and all agents play ε-greedy with ε = 0.04, we will observe the outcome

(G,YL ) with a probability of
(
.96+ .04

2

)2
, (G,G) and (YR ,YL ) with a probability of (.96 + .04

2 ) · .02
2 and

(YR , G) with a probability of
(

.02
2

)2
. Overall, we have a probability of 0.4804 to observe each (G,YL ) and

(YR ,G) and a probability of 0.0196 to observe (G,G) and (YR ,YL ).
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Fig. 2 Social dilemma game with 200 agents using WoLF, averaged over 1,000 runs. Agents use the game
of Table 2 player i . (G, YL ) emerges 534 times and (YR , G) 466 times. Agents sample their preferences from
Table 2. (G, YL ) emerges 506 times and (YR , G) 494 times

Using the same settings, we ran a simulation where all the agents have the same ordi-
nal preferences, but may have different cardinal representation of these preferences. At the
begining of each run, each agent draws her cardinal representation from the distribution of
games presented in Table 2. So, all agents may experience different cardinal payoffs for each
joint-action. On expectation, an agent has the same payoff as in the previous simulation (on
average, the payoffs are the ones of the game of player i in Table 2 used in the previous
simulation). We always observe the emergence of a norm. The dynamics is very similar to
the previous simulation, except it is slower. For some agents, except for the value of the
(G, G) state, the differences between the other payoffs may be small and agents may take
some additional time to learn the small differences.

These results confirm that only private experience is sufficient for the emergence of a
convention in a social learning framework. This is in contrast with prior work on convention
evolution which requires agents to have knowledge about non-local interactions between
other agents and their strategies [14,19,45].

4.2 Influence of population size, number of actions, and learning algorithm

The time required for the emergence of a convention in a society of interacting agents,
measured by the number of interaction periods before most agents adopt the convention,
depends on several factors. Here we study the influence of the size of the population, the
learning algorithm used, and the number of actions available to the agents.

First we consider the effect of population size. With a larger population, the likelihood that
two particular agents interact decreases. Hence the variety of opponents as well as the diversity
of personal interaction history increases with the population size. As a result, the population
takes more time to evolve a convention. In Fig. 3, we present the dynamics of the average
agent reward for the social dilemma game in a population of agents using WoLF with different
population sizes: with more agents, it takes longer for the entire population to converge on
a particular convention. In the real world, it is well-known that tight-knit, small societies,
groups, clans develop eclectic conventions that are often not found in larger, open societies.

Our hypothesis is that learning is facilitated when the agents have a very similar history.
With a small population, the same agents will meet often and they will have a similar history.
When the population becomes larger, it takes longer to meet the same agent on average. The
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Fig. 3 Dynamics of the average payoff of learners using WoLF with different population sizes (average over
100 runs)

Fig. 4 Dynamics of the probability to play R for each agent (each agent is represented by two lines: policy to
play as a row and a column player): the clearer the cell, the more likely to play L , the darker, the more likely
to play R. The convention of choosing action L emerges through social learning

graph suggests that after a certain population size, meeting an unknown agent or an agent
that was met long time before does not make such a difference on the speed of emergence.

For the rest of paper, we use the coordination game presented in Table 3. This stage game
models the situation where agents need to agree on one of several equally desirable alterna-
tives. For example, for the two-action case, this game can represent the situation where agents
choose on what side of the road to drive. When both agents drive on their left (action L), or
on their right (action R), there is no collision, else there is a penalty. The societal conventions
that we would want to evolve are either driving on the left or driving on the right. In Fig. 4,
we show the learning dynamics in a population of 20 agents. On the x-axis is the number of
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Fig. 5 Dynamics of the payoff of learners using WoLF with different game sizes (average over 100 runs)

iterations. Each agent is represented by two consecutive lines, one for learning to play as a
row player and the other to learn to play as a column one. The level of gray in a cell determines
the probability of playing action R: the darker it gets, the closer the probability is to 1. In this
particular run, we know that the norm where all agents play L emerges. We were expecting a
gradual convergence in which the policy of all agents would converge to action L at a similar
rate, i.e., in the figure, we expected to observe a gradual change of color from grey to white.
Surprisingly, we observed that some agents first get a strong preference for the other action R
(we observe very dark cells) but later changed and converged to white. From the early itera-
tions, it is difficult to foresee which action will finally emerge as the convention in the society.

Now, we consider the effect of the number of actions available to each agent. The stylized
game, representing other, non-driving scenarios, can be expanded to n-actions: the agents
receive a payoff of 4 when they choose the same action and a payoff of−1 when their actions
differ. We ran this experiment with n ∈ {2, 3, 4} in a population of 200 agents using WoLF.
The results are presented in Fig. 5. When the number of actions increase, the proportion
of joint actions with high payoff decreases. When the agents explore at the beginning, the
expected utility is less with a larger game. Over time a convention does emerge, with the
average payoff of the population approaching 4. It takes longer for a convention to evolve
for larger action sets as the space of joint actions increases quadratically.

Finally, we present the effect of the learning algorithm used by the agents in Fig. 6. Since
there is no clear choice of learning algorithms to use in general, we wanted to evaluate a
few representative learning algorithms. We study the influence of the learning algorithms
on a population of 200 agents playing the two-action game. When the entire population
uses the same learning algorithm, a convention emerges quicker with a population of Q-
Learners (≈ 100 iterations), followed by a population of WoLF (≈ 1, 000 iterations), and the
population of agents using FP (≈ 40, 000 iterations). The payoff reached at convergence is
different for different algorithms due to different exploration schemes. We also show results
of hybrid population using equal proportions of any two or all three of these algorithms.
The time taken by mixed groups to evolve conventions are in between the time taken by the
corresponding homogeneous groups.

We conclude that, even if the “opponent” may (1) be different, (2) have a different history
of interaction, (3) have a different learning algorithm, a convention still consistently emerges
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Fig. 6 Dynamics of the payoff of learners using different learning algorithms (population of 200 agents,
average over 100 runs)

through social learning. In the following, we study more scenarios (when some agents have
a fixed strategy, when agents can only interact with their neighbours in a social network)
and we will provide results with a single learning algorithm. We obtained similar results
when agents use different learning algorithms, the emergence is simply delayed when slower
learning algorithms are used.

4.3 Influence of fixed agents

So far, we have observed that all conventions with equal payoffs were evolved roughly with
the same frequency over multiple runs. This is understandable because the payoff matrix
in Table 3 does not support any preference for one convention over the other. Extraneous
effects, however, can bias a society of learners towards a particular convention. For example,
some agents may not have learning capabilities and repeat a pre-determined action. We study
the influence of agents playing a fixed pure strategy on the emergence of a convention. For
this study, we use the coordination game of Table 3 and consider a population with 3,000
learners, n f = 30 agents playing the fixed strategy 0 (driving on the left), and n f agents
playing strategy 1 (driving on the right). We ran experiments where we add additional agents
playing the pure strategy 1. Figure 7 presents the percentage of time that the convention (0, 0),
i.e., everyone driving on the left, and (1, 1), i.e., everyone driving on the right, emerges. Note
that when there are equal number of agents playing fixed strategy 0 and fixed strategy 1,
one of the two conventions emerges with almost equal frequency. It is interesting to note
that with only 4 additional agents choosing to drive on the right, the entire population of
3,000 agents almost always converges to driving on the right! There might therefore be
some truth to the adage that most fashion trends are decided by a handful of trend setters in
Paris!

4.4 Emergence of conventions in social networks

Now we consider agents situated in more restrictive interaction topologies. Each agent is
represented by a node in the network and the links represent the possibility of interaction
between nodes (or agents). In this section, we consider that agents form a one-dimensional
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Fig. 7 Number of times each convention emerges (average over 100 runs): a small imbalance in the number
of agents using a pure strategy is enough to influence an entire population

Fig. 8 Convergence times for different neighborhood sizes and different learning algorithms: Q-learning in
the figure refers to the classical Q-learning with a fixed exploration rate of 25 %. Q-learning EPS refers to
the defined Q-learning in Sect. 3.5 with epsilon-greedy exploration. HCR refers to highest cumulative reward
presented in other works ([12,24]), HCR is a deterministic scheme that uses finite memory of size M and
chooses the action that fetched the maximum cumulative value over the last M interactions

lattice with connections between all neighboring vertex pairs (example in Figs. 1b). Dur-
ing this experiment, we limited the execution of the simulations to one million timesteps.
Figure 8 shows a comparison of convergence times for different neighborhood sizes in a
one-dimensional lattice, with different learning algorithms.

We can see that when increasing the neighborhood size, the convergence time is steadily
reduced. This effect is due to the topology of the network. When the one dimensional lattice
has a small neighborhood size, on average, the diameter of the graph5 is high and therefore
agents located in different parts of the network need a higher number of interactions to
communicate their decisions or arrive at a consensus.

5 The diameter of a graph is the largest number of vertices which must be traversed in order to travel from
one vertex to another.
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When agents have a small neighborhood size, they will interact often with their neighbors,
resulting in diverse subconventions forming at different regions of the network. We note that
in each interaction, both agents are learning from it, therefore agents reinforce each other in
each interaction. Such divergent subconventions conflict in overlapping regions. To resolve
these conflicts, more interactions are needed between agents in the overlap area between
regions adopting conflicting subconventions. Unfortunately, the agents in the overlapping
regions may have more connections in their own subconvention region and hence will be
reinforced more often by their subconventions, which makes it harder to break subconventions
to arrive at a consistent, uniform convention over the entire society. On the other hand, when
neighborhood sizes are large, and hence network diameters are small, agents interact with a
large portion of the population. As a result, it is less likely that subconventions are created
or sustained.

5 Emergence of different sub-conventions

Though it is preferable that a convention emerges, it may not always be the case that a
single convention emerge in the population. In the following, we provide some evidence
showing that sub-conventions can emerge and be stable, and then analyze and explain the
cause underlying this phenomenons. First, we model two, completely-connected populations
that interact infrequently, and we see that a convention may not emerge when the likleihood
of interaction between members of the two populations is below a threshold value. We also
observed the existence of multiple sub-conventions in some scale-free networks.

5.1 Emergence of conventions in isolated subpopulations

It is well-documented that isolated populations in seggregated societies can be using contra-
dictory conventions, e.g., driving on the “right” or the “wrong” side of the road. We wanted to
replicate this phenomenon using our social learning framework. When two groups of agents
interact only infrequently, it is possible that a different convention emerges in each group.
In particular, we are interested in studying the degree of isolation required for divergent
conventions to emerge in different groups. For our experiments, we consider two groups of
equal size and a probability p that agents of different groups interact.

Results from this set of experiments are presented in Fig. 9. We observe that when the
probability of interaction is at least 0.3, a single convention pervades the entire population.
In roughly half of the runs all agents learn to drive on the left and for the other half they learn
to drive on the right. But for interaction probabilities of 0.2 and less, there are runs where
divergent conventions emerge in the two groups (corresponding to the white space above
the shaded bars in Fig. 9). This is a very interesting observation and we are surprised by the
relatively high interaction probabilities that could still sustain divergent conventions.

In the simulations, agents always have a small probability to explore, and they may pick
an action at random instead of following the policy learnt. From the point of view of the
learning algorithm, this is considered as some noise and does not trigger a sufficient change
in the policy. When the probability of interaction between the two groups is high, agents
will observe many interactions that does not follow their sub-convention, which is enough
to force the emergence of a single convention. However, the simulation suggests that with
a low probability of interaction, the presence of a different group using a different sub-
convention does not have a sufficient impact as it may be similar to some high level of
exploration.
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Fig. 9 Two groups of 100 agents each evolve conventions with different interactions frequencies (average
over 1,000 runs). When the probability of interaction is low, the groups can evolve different conventions

5.2 Convergence in scale-free networks

We observe another interesting phenomenon for scale-free networks: sub-conventions might
be persistent and the entire population fails to converge to a single convention! The coexis-
tence of stable sub-conventions was identified in [39] for the first time in all of our research
on convention emergence when using a specific utility function. We performed some addi-
tional experiments using our settings and we observed similar results. Contrary to what was
believed in previous work, we show that a norm may not always emerge. In this section, we
show that the emergence of two stable sub-conventions can be explained by some particular
structure of the network.

The explanation of this rather interesting phenomena can be found in some possible
substructure of such a network. By paying special attention to the scale-free networks when
sub-conventions remain stable, we identify a certain type of structure. We present, in Fig. 10,
a portion of a potential scale-free network that represents what we have identified as the sub-
convention incubator. We see two subgraphs connected through one central bridging node.
On one side, the bridging node is connected to k leaf nodes. On the other side, the bridging
node is connected to n hub nodes, themselves connected to many other nodes (which can be
connected with each other). Depending on the ratio between the k leaves and the n hubs, it
is possible that a different convention emerges on the k leaf nodes and the n hub nodes. This
is a special case of the previous experiments in which two populations are communicating
infrequently. Here, the two populations only interact through one node: the central node.

The method used in this work for the generation of the scale-free networks is the classic
Preferential Attachment [5]. With this method the network is constructed progressively,
adding nodes to an initial single-node network, and with a probability of linking nodes
proportional to the number of existing links of each node. In other words, better connected
nodes have higher chances to be connected with newly created nodes. However, and as it
is a probabilistic process, the rest of nodes can be connected to newly created nodes. The
resulting network has therefore a degree distribution that follows a power-law distribution,
meaning that some nodes have a high degree, forming a hub of nodes, when others have small
ones. Moreover, and inherent to the scale-free network, the clustering coefficient distribution
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Fig. 10 k–n Connected stars network

decreases as the node degree increases and also follows a power law. This means that low-
degree nodes are connected to dense sub-graphs and that those sub-graphs are connected to
each other through hubs. In other words, there are different communities, and few agents
are part of two or more communities. It is then possible to have a community that has very
few members connected with other communities at the edge of the network. Hence, we find
ourselves in a similar situation as in the previous section with two groups of agents interacting
unfrequently, allowing sub-conventions to remain meta-stable within those communities.

One possible line of future research is to study more closely the graph-structure in which
a sub-convention may emerge. Though we have studied some particular examples, we are
yet to provide a general description about such structures. The important claim we want to
make in this paper is that sub-conventions may arise in scale-free networks and that they
are sustained by a group of agents that interacts very infrequently with agents oustide their
group.

6 Conclusions

We investigated a bottom-up process for the emergence of social convention that depends
exclusively on individual experiences rather than observations or hearsay. Our proposed
social learning framework requires each agent to learn from repeated interactions for a given
social situation, without using knowledge of the identity of the other agents involved in
the interactions. The goal of this work was to evaluate whether such social learning can
successfully evolve and sustain a useful social convention that resolves conflicts and facili-
tates coordination between population members. Our experimental results confirm that such
distributed, individual, and social (interacting with many individuals rather than repeated
interactions with the same agent) learning is indeed a robust mechanism for evolving stable
social conventions. Our results suggest that private interactions are sufficient for a conven-
tion to emerge. Additional information (e.g. observation of interactions of other agents) can
improve the speed of emergence, but it is not required. Our results also suggest that to deploy
a multiagent system, one can use generic agents that use learning mechanisms which can,
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with no, or very little, detailed knowledge of the environment, learn efficient and stable
coordination behavior.

We investigate the effects of population size, number of actions, different learning strate-
gies, non-learning agents, and multiple relatively isolated populations on the speed and sta-
bility of convention evolution. We confirmed that even thorny problems like social dilemmas
can be successfully addressed by the social learning framework. This is quite encouraging
as the agents are learning from data gathered from interactions with many different agents,
and not a single opponent as is usually assumed.

We have identified certain challenges to the emergence and maintenance of subconven-
tions in particular types of topologies and mainly in scale-free networks. This was a surprise
as previous research demonstrated consistent emergence of a convention in all cases. We
hypothesize that stable subconventions, preventing emergence of globally consistent con-
ventions, arise in scale-free networks because of some inherent structural characteristics of
these networks. We plan to investigate, in further depth, the reasons why these subconventions
might be created and maintained, as well as, mechanisms to dissolve them.

For our simulations, we have assumed that each agent recognizes a given social situation
and was adapting his behavior for that particular situation. In real application, an agent will
need to perform this recognition, which may not always be easy. In particular, if an agent
realizes that no behavior is satisfying, she will need to define sub-situations or exceptions. It
will be interesting to study mechanisms to learn this efficiently.

We would like to study other intriguing phenomena like punctuated equilibria in social
convention evolution [46] within our framework. Other interesting experiments include study
of spatial distribution of agents and corresponding effects on rate and divergence of conven-
tion emergence.
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