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Abstract

When several agents learn concurrently, the payoff
received by an agent is dependent on the behavior
of the other agents. As the other agents learn, the
reward of one agent becomes non-stationary. This
makes learning in multiagent systems more difficult
than single-agent learning. A few methods, how-
ever, are known to guarantee convergence to equi-
librium in the limit in such systems. In this paper
we experimentally study one such technique, the
minimax-Q, in a competitive domain and prove it-
s equivalence with another well-known method for
competitive domains. We study the rate of conver-
gence of minimax-Q and investigate possible ways
for increasing the same. We also present a vari-
ant of the algorithm, minimax-SARSA, and prove its
convergence to minimax-Q values under appropri-
ate conditions. Finally we show that this new algo-
rithm performs better than simple minimax-Q in a
general-sum domain as well.

1 Introduction
The reinforcement learning (RL) paradigm provides tech-
niques using which an individual agent can optimize envi-
ronmental payoff. However, the presence of a non-stationary
environment, central to multi-agent learning, violates the as-
sumptions underlying convergence proofs of single agent RL
techniques. As a result, standard reinforcement learning tech-
niques like Q-learning are not guaranteed to converge in a
multi-agent environment. The focus of convergence for mul-
tiple, concurrent learners is on an equilibrium strategy-profile
rather than optimal strategies for the individual agents.

The stochastic-game (orMarkov Games) framework, a
generalization of Markov Decision Processes for multiple
controllers, has been used to model learning by agents in
purely competitive domains[Littman, 1994]. In that work,
the author has presented a minimax-Q learning rule and eval-
uated its performance experimentally. The Q-learning rule,
being a model-free and online learning technique, is particu-
larly suited for multi-stage games, and as such, an attractive
candidate for multiagent-learning in uncertain environments.
Hu and Wellman (1998) extended Littman’s framework to en-
able the agents to converge to a mixed-strategy Nash equi-

librium. There have also been other research on using the
stochastic-game framework in multiagent learning, such asan
empirical study of multiagent Q-learning in semi-competitive
domains[Sandholm and Crites, 1996] among others.

The first two techniques mentioned above are known to
converge in the limit. In this paper we show that these t-
wo techniques are essentially identical in purely competitive
domains. To increase the convergence rate of the minimax-
Q rule, we extend it to incorporateSARSA [Rummery, 1994;
Sutton and Burto, 1998] and Q(�) [Peng and Williams, 1996]
techniques, and study the convergence rates of these different
methods in a competitive soccer domain[Littman, 1994].

2 Multiagent Q-learning

Definition 1 A Markov Decision Process (MDP) is a
quadruplefS;A; T;Rg, whereS is the set of states,A is the
set of actions,T is the transition function,T : S � A !PD(S), PD being a probability distribution, and R is the
reward function,R : S �A! <.

A multiagent reinforcement-learning task can be looked upon
as an extended MDP, withS specifying the joint-state of the
agents,A being the joint-actions of the agents,A1 � A2 �: : : An whereAi is the set of actions available to theith agent,T as the joint-transition function, and the reward function is
redefined asR : S � A ! <n. The functionsT andR
are usually unknown. The goal of theith agent is to find
a strategy�i that maximizes its expected sum of discounted
rewards,v(s; �i) = P1t=0 tE(ritj�i; ��i; s0 = s) wheres0 is the initial joint-state,rit is the reward of theith agent
at time t,  2 [0; 1) is the discount factor, and��i is the
strategy-profile ofi’s opponents.

Definition 2 A bimatrix game is given by a pair of matrices,(M1;M2), (each of sizejA1j � jA2j for a two-agent game)
where the payoff of theith agent for the joint action(a1; a2)
is given by the entryMk(a1; a2); 8(a1; a2) 2 A1 �A2; k =1; 2.

Each stage of an extended-MDP for two agents (it can be
extended ton agents usingn-dimensional tables instead of
matrices) can be looked upon as a bimatrix game. Azero-
sum gameis a special bimatrix game whereM1(a1; a2) +M2(a1; a2) = 0; 8(a1; a2) 2 A1 �A2.



Definition 3 A mixed-strategy Nash Equilibrium for a bima-
trix game(M1;M2) is a pair of probability vectors(��1 ; ��2)
such that��T1 M1��2 � �T1 M1��2 8�1 2 PD(A1):��T1 M2��2 � ��T1 M2�2 8�2 2 PD(A2):
wherePD(Ai) is the set of probability-distributions over theith agent’s action space.

No player in this game has any incentive for unilateral de-
viation from the Nash equilibrium strategy, given the other’s
strategy. There always exists at least one such equilibrium
profile for an arbitrary finite bimatrix game[Nash, 1951].

An individual learner may, but need not, use a model of the
environment to learn the transition and reward functions. Q-
learning is one example of model-free learning. In greedy
policy Q-learning, an agent starts with arbitrary initial Q-
values (or action values) for each state-action pair(s; a), and
repeatedly chooses actions, noting its rewards and transitions
and updatingQ asQt+1(st; at) = (1� �t)Qt(st; at) + �t[rt + vt(st+1)℄
where vt(st+1) = maxa Qt(st+1; a): (1)

and�t 2 [0; 1) is the learning rate. Watkins and Dayan
(1992) have proved that the above iteration converges to opti-
mal action values under infinite sampling of each state-action
pair and a particular schedule of the learning rate.

In the case of multiagent learning, the above iteration
would not work, since the maximization over one’s action
is insufficient in the presence of multiple actors. However,
if the reward-function of the opponent is negatively correlat-
ed, then actions can be selected by solving the bimatrix-game(M(s);�M(s)) greedily for the opponent, and pessimistical-
ly for oneself, to guarantee a minimum expected payoff. This
produces Littman’s minimax-Q algorithm for simultaneous-
move zero-sum games, for which the value-function for agent
1 is vt1(st+1) = max�2PD(A)mino2O �TQt1(st+1; :; o); (2)

whereA andO are the action-sets of the learning-agent (agent
1) and its opponent respectively, andQt1(st+1; :; o) is a vector
of action values of the learner corresponding to its opponent’s
actiono. The current policy�(s) can be solved by linear-
programming for the constrained, minimax optimization onQ(s; :; :). The minimax-Q learning rule has been proved to
converge to optimal action values[Szepesvári and Littman,
1997].

For general-sum games, however, theith agent needs to
know��i, in absence of which it has to model its opponents.
In such games, each agent can observe the other agent’s ac-
tions and rewards and maintains separate Q-tables for each of
them in addition to its own[Hu and Wellman, 1998].

The value-function for agent 1 in this case isvt1(st+1) = ��1(st+1)TQt1(st+1; :; :)��2(st+1); (3)

where(��1 ; ��2) are the Nash-strategies of the agents for the
bimatrix gamefQt1(st+1; :; :); Qt2(st+1; :; :)g, which can be
solved by quadratic-programming technique[Mangasarian
and Stone, 1964]. In zero-sum games, the value-function in
(3) simplifies tovt1(st+1) = max�12PD(A1) min�22PD(A2)�T1 Qt1(st+1; :; :)�2: (4)

This algorithm converges to a Nash equilibrium, for a restric-
tive class of Nash-equilibria[Hu and Wellman, 1998], that in
addition to the constraints imposed by its definition, satisfies
the following��T1 Qt1(st+1)��2 � ��T1 Qt1(st+1)�2 ;8�2 2 PD(A2);��T1 Qt2(st+1)��2 � �T1 Qt2(st+1)��2 ;8�1 2 PD(A1):

Though this may not be true in general, it holds for zero-
sum domains, where any deviation by the opponent from its
equilibrium-strategy decreases its expected payoff, thusin-
creasing the modeler’s expected payoff. Hence, the conver-
gence of this algorithm is guaranteed in zero-sum domain-
s. Furthermore, the algorithms developed by Littman (1994)
and Hu and Wellman (1998) (we call the latter Nash-Q) differ
structurally only in the use of rules (2) and (4) respectively,
in updatingQ. But contrary to the statement made by Hu and
Wellman (1998), these expressions are functionally equiva-
lent in zero-sum games. Game theory[Thie, 1998] states that
in a zero-sum gamemax�12PD(A1) min�22PD(A2)�T1 Q1(s; :; :)�2= max�12PD(A1) mino2A2 �T1 Q1(s; :; o); 8s 2 S: (5)

An informal argument may go as follows. LetQ1(s; :; :) =(q1; q2; � � � ; qn), where qi represents theith column ofQ1(s; :; :); andn = jA2j. Then �T1 Q1(s; :; :) =(�T1 q1; �T1 q2; � � � ; �T1 qn) for any�1 2 PD(A1). When�T1 q
is treated as a random variable from the distribution�2, we
have min�22PD(A2)�T1 Q1(s; :; :)�2 = min�22PD(A2)E�2 [�T1 q℄� mino2A2 �T1 Q1(s; :; o):
On the other hand, since any pure strategy is also a mixed
strategy, we havemin�22PD(A2)�T1 Q1(s; :; :)�2 = min�22PD(A2)E�2 [�T1 q℄� mino2A2 �T1 Q1(s; :; o):
Consequently we have the equality (5). Therefore we observe
that both minimax-Q and Nash-Q compute identical policies
and value-functions in zero-sum domains.

3 Expediting minimax-Q learning
Since minimax-Q and Nash-Q algorithms are equivalent in
the purely competitive domains that we consider in this pa-
per, we focus on the minimax-Q algorithm since it does not
require maintenance of opponents’ Q functions and hence is
resource-efficient. We now turn to explore possible ways to
speed-up the chosen algorithm.



3.1 Fast minimax-Q(�)
Since Q-learning updates only the last state with the re-
inforcements, it is substantially slow in updating the ac-
tion values. A well-known technique to speed-up single-
agent Q-learning is to integrate it with TD(�) reward-
estimation scheme, producing the Q(�)-learning rule[Peng
and Williams, 1996]. For experimentation, we have used a
faster version of the Peng-Williams’ algorithm, where theQ
updates are ‘lazily’ postponed until necessary[Wiering and
Schmidhuber, 1998]. Q(�) can be applied to each of the two
learning schemes in the previous section, by definingv(st+1)
in the Q(�) algorithm by the equation in (2) or (3) as the
case may be. The guarantee of convergence, however, may
no longer hold.

3.2 Minimax-SARSA learning
The previous techniques were all off-policy learning rules,
where the expected value of the next state is used to update
the value of the current state. TheSARSA(0) technique is, on
the other hand, an on-policy learning rule that depends heav-
ily on the actual learning policy followed[Rummery, 1994;
Sutton and Burto, 1998]. In general, off-policy algorithms
can separate control from exploration while on-policy rein-
forcement learning algorithms cannot. Despite this, on-policy
algorithms with function approximation in single agent learn-
ing appear to be superior to off-policy algorithms in control
as well as prediction problems[Boyan and Moore, 1995;
Sutton, 1996; Tsitsiklis and Roy, 1997]. On-policy algo-
rithms can learn to behave consistently with exploration[Sut-
ton and Burto, 1998] Moreover, on-policy algorithms are
more natural to combine with eligibility traces than off-policy
algorithms are. This raises the following question that this
research effort endeavors to answer: Can on-policy RL algo-
rithms perform equally well in multiagent domains? In that
case we can possibly achieve faster convergence of a hybrid
of theSARSA technique and minimax-Q rule.

In a simple Q-learning scenario, theSARSA technique mod-
ifies the update rule (1) asvt(st+1) = Qt(st+1; at+1). Thus
a SARSA rule learns the values of its own actions, and can con-
verge to optimal values only if the learning policy chooses
optimal actions in the limit. In a multiagent minimax-Q set-
ting, the rule (2) would be replaced (for agent 1) byvt1(st+1) = Qt1(st+1; at+1; ot+1);
while the policy to choose actions would still be computed by
the original minimax-Q rule. To achieve convergence of this
rule to minimax-Q values, we follow an�-minimax strategy
that satisfies the need of infinite exploration while being min-
imax in the limit, i.e.,� decays to 0 in the limit. We call such
exploration ‘Minimax in the limit with infinite exploration’ or
MLIE. Our convergence result rests on the following lemma
established by Singhet al. (2000).

Lemma 1 Consider a stochastic process (�t,�t, F t), t � 0,
where�t;�t; F t : X ! < satisfy the equations�t+1(x) = (1� �t(x))�t(x) + �t(x)F t(x);
wherex 2 X; t = 0; 1; 2; : : : : Let Pt be a sequence of in-
creasing�-fields such that�0 and�0 areP0 measurable and

�t; �t andF t�1 arePt measurable,t = 1; 2; : : :. Assume
that the following hold:
1. X is finite.
2. 0 � �t(x) � 1; Pt �t(x) =1; Pt �2t (x) <1 w.p.1.
3. kEfF t(:)jPtgkW � Æk�tkW 1 + t, whereÆ 2 [0; 1) andt converges to 0 w.p.1.
4. V arfF t(x)jPtg � �(1 + k�kW )2, for some constant�.
Then,�t converges to 0 with probability 1 (w.p.1).

The update rule forSARSA for agent 1 say, isQt+11 (st; at; ot) = (1� �t)Qt1(st; at; ot) +�t[r1t + Qt1(st+1; at+1; ot+1)℄:(6)

We also note that the fixed point of the minimax-Q
rule [Szepesvári and Littman, 1997] (for agent 1) isQ�1(st; at; ot) = R1(st; at; ot) +Ey[max�1 mino �T1 Q�1(y; :; o)℄: (7)

Now we state and prove the theorem for convergence of
minimax-SARSA learning using Lemma 1.

Theorem 1 The learning rule specified in (6) converges to
the values in equation (7) with probability 1 providedat is
chosen using an MLIE scheme at each stept, the immediate
rewards are bounded and have finite variance, the Q-values
are stored in lookup tables, the learning rate,�t, satisfies
condition 2 in Lemma 1, and the opponent plays greedily in
the limit.

Proof: (Outline) Writingx in Lemma 1 as (st; at; ot) and�t
asQt1(st; at; ot)�Q�1(st; at; ot), and defining�t(s; a; o) = 0
unless(s; a; o) = (st; at; ot) 8t, we haveF t(st; at; ot) = r1t + max�1 mino �T1 Qt1(st+1; :; o)�Q�1(st; at; ot) + Qt1(st+1; at+1; ot+1)�max�1 mino �T1 Qt1(st+1; :; o)℄; (8)

which gives rise toF t(st; at; ot) = F tM (st; at; ot) + [dt(st; at; ot)℄:
It can be shown that the measurability and variance condi-

tions are satisfied and thatkEfF tM (:; :; :)jPtgk � Mk�tk
for someM 2 [0; 1) (since minimax-Q operator is a con-
traction), according to the outline provided by Singhet al.
(2000). The remaining task is to show thatkEfdt(:; :; :)jPtgk
vanishes in the limit, under MLIE exploration. We consider
the following cases:

Case 1: Qt1(st+1; at+1; ot+1) � max�1 mino �T1 Qt1(st+1; :; o).
Since max�1 mino �T1 Qt1(st+1; :; o) �minoQt1(st+1; at+1; o), we have dt(st; at; ot) =jdt(st; at; ot)j � Qt1(st+1; at+1; ot+1) �minoQt1(st+1; at+1; o) and the corresponding ex-
pected value vanishes in the limit if the opponent plays
greedily in the limit.

1for our purposek:kW is a max-norm for a uniform weight-
vector,W .



Case 2: max�1 mino �T1 Qt1(st+1; :; o) � Qt1(st+1; at+1; ot+1).
Again, max�1 mino �T1 Qt1(st+1; :; o) ���T1 Qt1(st+1; :; ot+1) where ��1 =argmax�1 mino �T1 Qt1(st+1; :; o). Hence�dt(st; at; ot) = jdt(st; at; ot)j ���T1 Qt1(st+1; :; ot+1) � Qt1(st+1; at+1; ot+1). The
associated expected value vanishes again in the limit
due to the assumption of an MLIE policy on part of
agent 1, and independent of the opponent’s behavior.

Let Ct(st; at; ot) be the maximum of the two upper lim-
its on jdt(st; at; ot)j established above. We see thatEfjdt(st; at; ot)jg � EfCt(st; at; ot)g and the r.h.s van-
ishes for each state-action tuple. Hence,Efjdt(st; at; ot)jg
vanishes for each state-action tuple, which implies thatkEfdt(:; :; :)jPtgk vanishes in the limit under MLIE explo-
ration and optimal play by the opponent in the limit. Set-
ting t in Lemma 1 tokEfdt(:; :; :)jPtgk, we conclude that
minimax-SARSA rule converges to the minimax-Q values un-
der MLIE exploration with probability 1, if the opponent
plays greedily in the limit, and under appropriate structure
of �t. [Q.E.D.]

Note thatCase 1needs the boundedness ofQt1 that follows
easily under additional assumptions. It might be argued that
the condition of greedy play by the opponent in the limit is
restrictive. However, this is typical of a convergence proof of
on-policy algorithms that requires more details of the actions
taken by the agents. Gains from on-policy algorithms in terms
of learning efficiency and cost offset the condition of greedy
play in the limit.

4 Experiments in a Competitive Domain
To evaluate the proposed schemes, we used the purely com-
petitive soccer domain[Littman, 1994]. It is a 4 � 5 grid
containing two agents,A andB, as shown in figure 1, that
always occupy distinct squares. The goal of agentA is on the
left, and that ofB on right. The Figure 1 shows the initial
positions of the agents, with the ball being given to an agent
at random at the start of each game (agentB in figure). Each
agent can choose from a fixed set of five actions at each state:
going up, left, down or right, or staying where it is.

A

B

Figure 1: The experimental soccer domain.

When both the agents have selected their actions, these ac-
tions are executed in a random order. If an agent bumps onto
another, the stationary agent receives the ball, and the move-
ment fails. An agent receives reinforcements of +1 for a goal
(or a sameside by the opponent) and -1 for a self-goal (or

a goal by the opponent) to maintain the zero-sum character
of the game, and in all other cases the reinforcement is ze-
ro. Whenever a non-zero reward is received, the game resets
to the initial configuration. We shall call an agent following
Littman’s minimax-Q algorithm an M-agent.

In the training phase of the experiments, we performed
symmetric training between two ordinary M-agents, two M-
agents both using theQ(�) rule, and two M-agents both us-
ing theSARSA rule. The respective policies learnt, are denoted
asMMi; �MMi; sMMi, which are recorded at the end of
eachi � 10000 iterations. Each training lasted 100,000 iter-
ations in all. We used identical exploration-probabilities as
that by Littman (1994) and the decay-factor for the learning-
rate was set to 0.999954.
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Figure 2: Games are played bysMMi (left) and �MMi
(right) againstMMi for various values ofi (horizontal ax-
is). The percentages of wins (vertical axis) by the former in
each case are plotted (averaged over 10 runs).
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Figure 3: Games are played by�MMi againstsMMi for
various values ofi. The percentages of wins (averaged over
10 runs) by the former in each case are plotted.

In the test phase, we allowed ansMMi policy to play a-
gainst anMMi policy, for i = 1 : : : 10. Each test iteration
results in a draw with a probability of 0.05, to break possible
deadlocks. The resultant percentages of win by thesMMi
policies over its opponent are reported in Figure 2 (left). The
approximate trend suggests that ordinary minimax-Q initially
dominates but minimax-SARSA gradually catches up and out-
performs the former. In Figure 2 (right), the corresponding
results from playing�MMi againstMMi are shown. In



this case the minimax-Q(�) rule outperforms the ordinary
minimax-Q algorithm from the very beginning. However,
the�MM policies gradually lose their edge as the ordinary
minimax-Q rule learns better progressively. The figure 3 cor-
roborates these observations, as�MMi performs well againstsMMi, but this performance decays with increasingi. � was
set to 0.7 in both experiments.

We note that percentage of wins in such games may not be
a good comparative estimator of the policies. A better esti-
mator would be the average RMS deviations of the Q-values
from their convergence values. However, the latter can be cal-
culated in this domain only with extensive off-line computa-
tion. We also stress that the results reported are far from con-
vergence, at which all the algorithms should perform equally
well. The reason why sMM beats MM can be understood in
the context ofQ updates. While sMM uses the actual action
value from the next state to update the current state, MM still
uses the minimax value from the next state, which postpones
relying on the individual table-entries. As a result, we expect
MM to catch up (in Fig. 2 left) when learning continues.

5 Experiments in a General-sum Domain
We note that minimax-Q rule is applicable in general-sum do-
mains as well, where the rationale of the assumption of mini-
mizing policy of the opponent is to guarantee a minimum se-
curity level to the learner, instead of maximizing the reward
of the opponent itself as in the zero-sum interpretation. The
SARSA andQ(�) versions will still work in such domains. For
the purpose of experimentation, we introduce a general-sum
domain that we call “tightly coupled navigation.” This is a4� 3 gridworld as shown in figure 4. The values in the low-
er left corner of each cell in figure 4 is the reward to agent
1 for reaching the state corresponding to that cell. Similarly
the values in the upper right corner are those for agent 2. The
rewards in this domain are state-based, i.e. the reward cor-
responding to a cell is received if the agents reach or remain
in that cell. Here the agents are tightly coupled as they must
always occupy the same cell. Each agent has three available
actions in each state, viz. up, down, right. However, since
they are coupled, they can move only when they choose the
same action; otherwise they remain in the same state. The
starting and the absorbing states have been shown in the fig-
ure 4. When the agents reach the goal state, each receives the
reward 20 and without making any update in this iteration,
the game restarts with the agents reshifted to the start-state
and updates begin once again.

A more realistic scenario for this domain is car-driving.
Consider two agents in the same car and each having a steer-
ing wheel in its hands. The car moves in a given direction
if both move the wheels in that direction; otherwise the car
does not move. There may be different paths that the agents
wish to follow to reach their common goal. However, since
they are tightly coupled, they must strike a compromise and
find an intermediate path that both can be maximally satisfied
with, given the coupling.

We have symmetrically trained two minimax-Q and two
minimax-SARSA agents in this domain. The exploration prob-
abilities for the agents in each iteration were the same as inthe

10 10 10 10

0 1 1 20

-10 5 5 -10

-1 0 0 0

0 1 1 20

10 10 10 10

Start

state state

Goal / Absorbing

Figure 4: The tightly coupled navigation domain.

soccer domain, viz.0:2. We varied the probability of reward-
generation in each iteration using three values, viz. 0, 0.5and
1.0, where 0 stands for the case where rewards are generat-
ed only when the agents reach the goal state. We wanted to
study the effect of infrequent rewards, which is a realistics-
cenario in most practical domains, on the convergence of our
algorithms. We expected the convergence rates to fall with
more and more infrequent rewards. In order to study the con-
vergence, theexactminimax-Q tables were computed off-line
and an average RMS deviation of the learned Q-tables every
1000 training-iterations were plotted. The trainings lasted a
total of 10,000 iterations.
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Figure 5: Mean RMS deviation plots of minimax-SARSA

(solid) and ordinary minimax-Q for probability of reward-
generation = 0.

From figures 5, 6 and 7, we can see that the minimax-
SARSArule always performs better than the ordinary minimax-
Q rule. The errors in all the cases decrease monotonically
which suggests that both the rules will eventually converge.
As expected, the error-levels fall with increasing probability
of reward-generation. A scrutiny of the minimax-Q tables
show that the minimax path learned by each agent should be
different from the Nash-equilibrium path that is corroborated
by the learned Q-tables.
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Figure 6: Mean RMS deviation plots of minimax-SARSA

(solid) and ordinary minimax-Q for probability of reward-
generation = 0.5.
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Figure 7: Mean RMS deviation plots of minimax-SARSA

(solid) and ordinary minimax-Q for probability of reward-
generation = 1.0.

6 Conclusion and Future work

We conclude that both theSARSA and Q(�) versions of
minimax-Q learning achieve speed-up on Littman’s minimax-
Q rule, and more so for theQ(�) rule. Though this latter
rule works well, we are not aware of the theoretical con-
vergence properties of this method. Exploring these prop-
erties is one open area. We also note that a combination
of minimax-SARSA andQ(�) to form what could be called
minimax-SARSA(�), would probably be more expedient than
either of the two, by naturally combining their disjoint areas
of expedience, seen in the plots in figure 2. Results from
associated experiments are awaited. We could also substi-
tute Nash-learning for minimax-learning and achieve Nash-
Q(�) and Nash-SARSA, specialized fast learning procedures for
general-sum domains. A theoretical proof of convergence of
such a Nash-SARSAwould be along the same lines as presented
in this paper for minimax-SARSA. We plan to conduct experi-

ments with all these hybrid algorithms.
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