
Evaluating concurrent reinforcement learnersManisha Mundhe & Sandip SenDepartment of Mathematical & Computer SciencesUniversity of Tulsa600 South College Avenue, Tulsa,OK 74104phone:918-631-2985, FAX:918-631-3077, e-mail:sandip-sen@utulsa.eduAbstractAssumptions underlyingthe convergence proofs of Reinforcement learn-ing (RL) algorithms like Q-learning are violatedwhen multiple interacting agents adapt theirstrategies on-line as a result of learning. Empir-ical investigations in several domains, however,have produced encouraging results. We system-atically evaluate the convergence behavior ofconcurrent reinforcement learning agents usinggame matrices of varying complexity as studiedby Claus and Boutilier Claus & Boutilier [?].Variants of simple RL algorithms are evaluatedfor convergence under relative prominence ofglobal optima, feedback noise, scale up of gamematrix size, and game matrix characteristics.Our results show surprising departures fromthat observed by Claus and Boutilier, particu-lar for larger problem sizes. We present an anal-ysis and explanation of the experimental resultsthat provides insight into the nature of conver-gence of these concurrent learners. We identifythe variants of the algorithms studied as recur-sive modeling agents. This allows us to suggestmore e�ective learning agents with deeper lev-els of nesting of beliefs about other agents. Wealso discuss the e�ect of greedy and non-greedystrategies on the modeling agents. Our resultsshow that the greedy strategy turns out to bebetter for higher level modeling agents.1 IntroductionWhereas previous research on developing agent coordi-nation mechanisms focused on o�-line design of agent or-ganizations, behavioral rules, negotiation protocols, etc.,it was recognized that agents operating in open, dynamicenvironments must be able to 
exibly adapt to changingdemands and opportunities [?]. In particular, individ-ual agents are forced to engage with other agents whichhave varying goals, abilities, composition, and lifespan.To e�ectively utilize opportunities presented and avoidpitfalls, agents need to learn about other agents andadapt local behavior based on group composition and

dynamics. For machine learning researchers, multiagentlearning problems are challenging, because they violatethe stationary environment assumptions used by mostmachine learning systems. As multiple agents learn si-multaneously in a tightly coupled system, the feedbackreceived by the same agent for the same action variesconsiderably. The stationary environment assumptionused by most current machine learning systems do nothold for such rapidly changing environments.In this paper, we evaluate the e�ectiveness of stan-dard reinforcement learning techniques for learning co-ordination strategies from feedback received due to re-peated interaction with other agents in the environment.The attractiveness of RL algorithms stem from the factthat little prior knowledge of the domain or of the de-cision mechanisms adopted by the other agent are re-quired. For example, assumptions regarding whetherother agents are friendly or hostile are not necessaryfor the use of RL techniques. As suggested above, noformal guarantees exist for the convergence of concur-rent reinforcement learners to mutually coherent poli-cies. Researchers, however, have demonstrated partiallysuccessful applications of standard RL methods for anumber of synthetic multiagent environments [?; ?; ?;?].Claus and Boutilier [?] have used repeated two-agentsingle stage games as the environment to demonstratethe relative e�ciency of two concurrent RL agents. Thispaper is largely motivated by this latter body of work.In particular, our work begins by carefully evaluatingRL algorithms used by Claus and Boutilier. The typeof games that we study, however, is more varied thanthose studied by them and helps to better identify thestrengths and weaknesses of these learning schemes. Weare also able to identify critical problems with these al-gorithms, which in turn, allows us to develop more ap-propriate concurrent learning schemes with signi�cantlyimproved performance over a wide variety of game types.2 Reinforcement LearningIn reinforcement learning problems [?] reactive andadaptive agents are given a description of the currentstate and have to choose the next action from a set ofpossible actions so as to maximize a scalar reinforcement



or feedback received after each action. The learner's envi-ronment can be modeled by a discrete time, �nite state,Markov decision process that can be represented by a 4-tuple hS;A; P; ri where P : S � S � A 7! [0; 1] gives theprobability of moving from state s1 to s2 on performingaction a, and r : S �A 7! < is a scalar reward function.Various reinforcement learning strategies have been pro-posed using which agents can develop a policy to maxi-mize rewards accumulated over time. For evaluating theclassi�er system paradigm for multiagent reinforcementlearning, we compare it with the Q-learning algorithm,which is designed to �nd a policy �� that maximizesreward for all states s 2 S. The decision policy is repre-sented by a function, Q : S � A 7! <. If an action a instate s produces a reinforcement of R and a transitionto state s0, then the corresponding Q value is modi�edas follows:Q(s; a) (1� �) Q(s; a) + � (R+ 
 maxa02AQ(s0; a0)):In this paper, we present experiments with statelessdomains and immediate feedback. So, Q-values arelearned only for actions, and the update rule is simpler(actually the learning methods studied here are muchmore akin to estimator algorithms [?] but we are follow-ing Claus & Boutilier's framework for ease of compar-ison). While stateless RL is indeed much simpler thanstate-based RL, it allows for a much more systematic andcontrolled variation of the environment to evaluate thee�ectiveness of concurrent reinforcement learners. Wewill see that even such \simple" domains can be used toobtain interesting insight into the working of concurrentRLs. Our work, as well as that of Claus and Boutilier [?]should, however, be recognized as only the �rst steps to-wards building a much needed understanding of concur-rent learning agents in more general scenarios.2.1 Concurrent reinforcement learnersWe present four types of concurrent RL algorithm thathave been used in our experimentation. The �rst two ofthese are based on Claus and Boutilier's experiments [?],while the third one is a modi�cation of the second al-gorithm: Individual reinforcement learners (Is):These agents simply use the following update rule to up-date their Q-values: Q(a)! (1��)�Q(a)+��r; wherer is the reward obtained from the game matrix, and �is the learning rate. The exploration scheme used is abiased Boltzmann method, with action a being chosenwith the probability exp(Q(a)T )Pi2A exp(Q(i)T ) ;where A is the set of actions available to agent A. Vidaland Durfee [?] describes such an agent as a 0-level agent,as it does not maintain any explicit model of other agen-cies in its environment.One-level Expected Utility based Probabilisticreinforcement learner (1EUPs): Q-values are cal-culated as in the case of Is. Expected value of action a

is calculated as E(a) = Pb2B Q(a; b)Pr(b), where B isthe set of actions available to the other agent, and Pr(b)is the probability that the other agent will choose actionb. The probabilities are calculated from the observedfrequencies with which the other agent has chosen fromits set of actions. The expected values for actions, andnot the corresponding Q-values, are used to calculatethe Boltzmann exploration probabilities1. These agentsmodel other agents as 0-level agents. Vidal and Durfeerefer to such agents as 1-level agents.Two-level Expected Utility Maximizing rein-forcement learner (2EUMs): A 2EUM models theother agent as a 1EUP. In order to calculate the actionprobability distribution of this other agent, the 2EUMassumes that the other agent has the same policy ma-trix as itself. Using its own past history of actions, the2EUM �rst calculates the probability of other agent'staking a particular action. Using this probability dis-tribution, it then calculates its own expected utility oftaking any action and chooses the action that has themaximum expected utility. These agents model otheragents as 1-level agents. Vidal and Durfee refer to suchagents as 2-level agents.For ease of reference, in the rest of the paper, we willrefer to the Is, 1EUMs, and 2EUMs as 0, 1, and 2-levellearners respectively.3 ResultsWe ran a series of experiments on deterministic gamematrices of the form shown in Table 1. The game matrixrepresents the feedback given to both agents when theyselect any particular action combination. We have alsoused stochastic games where the matrix elements con-tain both a mean and a standard deviation, and Gaus-sian random numbers generated with those means andstandard deviations are provided as feedbacks for givenaction choices.The goal of our experiments is to evaluate the rela-tive capabilities of the described independent learningstrategies to quickly converge to globally optimal actioncombinations, where globally optimal refers to feedbackmaximization. If two strategies converge to the same av-erage payo�s, we prefer the strategy which allows agentsto reach the corresponding policies with smaller num-ber of interactions. For our experiments we have chosen� = 0:1 and have initialized Q-values to 0. Initial valueof the Boltzmann exploration temperature parameter, T ,was set to 16 and it was discounted in successive itera-tions by a temperature discounting factor of 0.99.Our �rst set of experiments were run on a 2x2 gamematrix with x = n = 1 and m = y = 0:75 1. Themain surprise from these set of experiments was thatthe 0-level learners converged faster and more success-fully than non-myopic 1-level learners. This is in contrastto the results reported in Claus and Boutilier's [?] work.1Claus and Boutilier [?] call these agents \Joint actionlearners" or JAL agents.



b0 b1a0 x ya1 m nTable 1: A 2x2 game matrix with deterministic payo�s.They did not report the � values used or the exact meth-ods of calculating the probabilities. We, however, usedthe temperature values they used (initial T = 16 anddiscount factor of 0.99) and got better results than theyreported with our choice of � = 0:1 and frequency-basedprobability calculation. The performance order di�er-ence was produced by the fact that the 0-level learnersin our implementation improved more than the 1-levellearners as compared to the results reported by Claus &Boutilier [?].
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’2g-2g.myopic.2.0’Figure 1: Relative performance of individual I (0-0),1EUP (1ng-1ng), 1MEUP (1ng-1ng.myopic) and 2EUM(2g-2g) learner pairs where each agent can choose one oftwo available actions.The above performance order observation is counter-intuitive as one would think that with more informationabout action choices of the other agent, agents wouldlearn to coordinate in fewer interactions. But, if theprobabilities of other agent's actions are inaccurate, thismisleading information can delay convergence. Anotherreason may be that the 1-level learner assumes that theother agent is a 0-level agent. Since this assumption iswrong, performance su�ers. A key reason for the 1-levelagent's ine�ciency is that it uses all the previous inter-actions to calculate the probabilities of the other agenttaking di�erent actions while deciding its own action.Thus it also takes into account the initial random movesthat other agent makes. This itself may signi�cantly de-lay convergence.This observation led us to devise a variant of the 1-level agent that we describe below:One-level Myopic Expected Utility based Proba-bilistic reinforcement learner (1MEUPs): We be-lieve that as agents learn, their probability distributionof action choices can change quickly. Thus using the en-tire history of action choices to construct the probability

b0 b1a0 v + � va1 v v + �Table 2: Intermediate learned Q-values in a 2x2 game.distribution may not produce useful models of opponentbehavior. In this form of learner, only the last k (we haveused k = 10) interactions are used to generate the prob-ability distribution. This, in e�ect, captures the recenttrend in the behavior of the other agent which resultsin a more up-to-date model. We should also clarify thatthe 2-level agents in our experiments model the otheragent as a myopic 1-level agent.When we ran experiments with the myopic 1-levelagents we found that they not only out-performed thenon-myopic 1-level learners, but also converged fasterthan 0-level learners. Thus a myopic evaluation of otheragents' behavior better enables the learning process tokeep pace with the adaptation of the other agent. Unlessexplicitly mentioned otherwise, all 1-level agents usedhere and the rest of the paper are myopic in nature.Finally, the 2-level learners out-perform all the otherstrategies we have seen earlier in this section.3.1 E�ects of scale-up of policy spaceWe varied the number of actions available to each agentfrom 2 to 5 to 10 to 20. The payo� matrices used hadonly two possible values: all the diagonal elements hadthe same optimal value of 1, and the o�-diagonal ele-ments had a payo� of 0.75. The results from these ex-periments are presented in Figure 2.In general, for the smaller problem sizes, performanceof the di�erent agent types are in the following order:2-2, 1-1, 0-0 (see Figure 1). But as we increase the ac-tion space, i.e., allowing more actions per agent, the 1-1scenarios converge at a suboptimal value, even though,the rate of convergence is still better than the 0-0 agents(see Figure 2). The 0-0 and 2-2 scenarios still convergeoptimally.A plausible explanation of the quick convergence inthe case of 1-1 scenarios is that there is insu�cient ex-ploration of the state space, resulting in premature con-vergence. Let us consider a sample Q-value matrix for2 agents with 2 actions per agent. Suppose at some in-termediate state, the Q-values learnt are as shown inTable 2. Let p and 1�p be the observed probabilities ofagent B taking actions b0 and b1. The expected utilitiesfor agent A's two actions can then be calculated asE(a0) = p(v + �) + (1� p)v = p� + v;E(a1) = pv + (1� p)(v + �) = v + (1� p)�:Let us suppose p > 0:5, i.e., p > 1�p. Then, from theabove we have E(a0) > E(a1). The probabilities of dif-ferent action choices for a 1-level learner varies directlyas the expected utility of those actions. The higher ex-pected utility for action a0, increases the probability of
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Figure 2: Relative performance of individual I (0-0), 1EUP (1ng-1ng), 1MEUP (1ng-1ng.myopic) and 2EUM (2g-2g)learner pairs with scale up of problem size. The numbers between the periods refer to the number of actions availableto an agent.agent A taking action a0, and this probability increaseswith the frequency with which A have seen B taking ac-tion b0. Therefore, with a larger value of p, the expectedutility of action a0 for agent A increases, resulting ina0 being chosen more frequently. This makes the 1-levelagent more exploitative in nature. A similar analysis ap-plies for agent Band results in its choice of action b0 ifit sees A choosing a0 more often. This means that thereis mutual reinforcement for exploiting small di�erencesin learned policy values. For a 0-level agent the utilitiesof each action are di�cult to calculate for the same sce-nario as the Q-values will evolve di�erently. But in theabsence of the additional multiplicative probability fac-tors, the two actions are likely to be closer in estimatedutility compared to the 1-level agents. This means thatthe 0-level agent would continue to explore longer thanthe 1-level agents.The mutual bias in the case of 1-1 agents allow fortheir relatively quick convergence to the global optimumwhen initial samplings produce higher Q-values for op-timal action combinations. The downside of this bias isthe convergence to suboptimal choices when these policyelements have higher estimates from initial samplings.As problem size increases, each action gets fewer eval-uations during the initial explorative phase. As such,there is a greater chance that some suboptimal actioncombination will be estimated to have a higher payo�than the optimal combinations. A plausible �x to thisproblem would be to extend the initial exploration phaseshould be extended by choosing an appropriate temper-ature schedule as problem sizes increases, e.g., by in-creasing the initial temperature or the discounting fac-tor in the Boltzmann exploration mechanism. This �x,unfortunately, will also cause the learning curve of 1-1scenarios to rise slowly and it is not clear a priori if the1-1 scenarios will then converge any faster than the 0-0scenarios.The premature convergence of 1-1 scenarios can beavoided if the Q-values represent the actual pay-o� struc-ture before the agents start exploiting. This can also be

achieved by increasing the learning rate (the � value inthe Q-value update rule). The higher learning rate en-ables actual pay-o� values to be estimated with less num-ber of interactions. This is particularly true in the ab-sence of noisy payo�. In such cases, a shorter exploratoryphase may be su�cient to learn accurate estimates of ac-tion combinations and as such will produce convergenceto optimal action combinations. For a matrix size of10 and � = 0:25 the agents converge optimally. Butthis � value is not su�cient for optimal convergence formuch larger problems. As � values have to be contin-ually increased for larger problem sizes, such schemeswill be ine�ective in noisy domains, as larger values of �will produce wide 
uctuation in policy values over timeand can actually slow down convergence. A preferredapproach to attacking the premature convergence prob-lem might be to combine the above two approaches, i.e.,to use higher � values and longer exploratory phase asproblem size increases.We also considered the two agents using di�erentstrategies, e.g., one of the agents being 1-level whereasthe other being a 0-level agent (we will refer to this sit-uation as a 1-0 scenario), and so on. We conducted ex-periments with m = 0:75 in 2-1, 1-1, 1-0 scenarios andobserved that the 2-1 scenarios worked better than the1-0 scenarios which, in turn, worked better than the 0-0 scenarios. More importantly, the 1-0 scenarios workedbetter than the 1-1 scenarios. Actually, the 1-0 scenariosalways converge optimally for problem sizes up to 20, thelargest problems we have experimented with. In the 1-0scenarios, the exploitative behavior of the 1-level learneris compensated by the explorative behavior of the 0-levellearner.Probabilistic versus deterministic action choicesin higher level agentsInstead of using a probabilistic (non-greedy) measure forselecting action, we used a greedy utility maximizationstrategy for the 2-level agents so far, i.e., the action cho-sen by 2EUM is given as argmaxa2AEU (a), where A



is the action set for the agent (this is a deterministicchoice). We implemented a non-greedy version of the 2-level agent which uses a Boltzmann exploration schemeto choose its action. In this scheme, the probability ofchoosing action a is given by exp(EU(a)T )Pi2A exp(EU(i)T ) . Since thisagent uses the expected utilities to de�ne a probabilitydistribution over its actions, we call it a Expected Utilitybased Probabilistic agent, or 2EUP agent. On the 
ipside, the 1-level agent we have used before, i.e., the my-opic 1EUP learner, chooses action probabilistically. Wealso implemented a greedy 1-level learner, an 1EUM,which chooses the action that maximizes its expectedutility.We performed experiments to compare the greedystrategies with the non-greedy strategies. If both learn-ers are greedy 1-level agents, they converge immediatelyto the �rst action combination they choose (as the corre-sponding payo� is then more all other actions) and hencethese agents were not used together in any further ex-periments. The 2-level agents with non-greedy strategyconverge prematurely and take more interactions to con-verge than 2-level agents with greedy strategies (see Fig-ure 3). The greedy 2-level agent assumes that the otheragent is an 1EUP learner and the corresponding proba-bility calculations to generate that agent's action prob-abilities temper the exploitative behavior of the greedy2-level agents and avoids premature convergence. Thehigher degree of exploitation in greedy 2-level agentswhile selecting its own action after forming the actionprobability distribution about the other agent causesfaster convergence compared to the non-greedy 2-levelagents.We also performed experiments with the 1(greedy)-0and 2(non-greedy)-1(non-greedy) scenarios. Though theconvergence speed of this 1-0 and 2-1 scenarios are simi-lar, only the 2-1 scenarios show premature convergence.The overall message from all this seems to be that thegreedy versions of the 2-level learners, 2EUMs, are thebest strategies to be used in homogeneous cooperativegroups. The best mixed group in our experiments is the2(greedy)-1(non-greedy pair).3.2 E�ects of prominence of global optimaIn this series of experiments, we we varied h, the promi-nence of global optima compared to other solutions, byvarying the o�-diagonal elements in the payo� matrix.We set the diagonal elements to be 1 and created sev-eral game matrices with o�-diagonal values of 0, 0.25,0.5, 0.75. The corresponding h values are 1, 0.75, 0.5,and 0.25 respectively. All the four strategies took moretime to converge as h is decreased. Of greater concernis the fact that convergence to sub-optimal solutions canincrease with decreasing h if initial exploration is lim-ited. This happens in our experiments if either the ini-tial temperature or the temperature discounting factorin the Boltzmann exploration scheme is relatively small.Any constant value for the discount factor will causethe premature convergence problem for su�ciently large

problem sizes. A solution to this problem is to use largerfactors for larger problem sizes.3.3 E�ects of noisy feedbackIn the experiments reported above, the feedback was de-terministic. In this set of experiments, we used payo�matrices with o�-diagonal element values of 0.75 andvaried the amount of noise associated with the feedback(see Figure 4). Gaussian noise with zero-mean and vary-ing standard deviation values were used for every actioncombination. The standard deviation was varied from 0(deterministic payo�) to 0.5. As noise is increased, theagents take longer to converge to the global optima.3.4 Varying matrix characteristicsWe provided two 0-level agents with two distinct pay-o� matrices for the same action choices. Such "games"are not necessarily cooperative in nature. In this pa-per, however, we have deliberately chosen payo� matri-ces such that the game is not competitive in the senseof the corresponding game being a zero-sum one. Twoparticular variations of matrix types, and correspondingproblems, are described below (the variables in the fol-lowing correspond to Table 2):Case analysis: Agent A's clear choice is to chooseaction a0, i.e., xA > mA, and yA > nA. For agentB, though there were no obvious choices. However,yB > xB, and hence, once agent A commits to action a0,agent B learns to choose action b1. Results are shown in�gure 5.Best plan: In these games, xA is better than all othermatrix values for agent A, and xB is better than all othermatrix values for agent B. Over time, the agents learnto choose a0 and b0 respectively 5.4 Related workPrevious work on using reinforcement learning for co-ordinating multiple agents [?; ?] have relied on explicitinformation sharing. We, however, concentrate on sys-tems where agents share no problem-solving knowledge.Agents that learn independently and autonomouslywithout communication are not a�ected by communica-tion delays (due to other agents being busy) or failure ofa key agent (who controls information exchange or whohas more information), and do not have to be worryabout the reliability of the information received (Do Ibelieve the information received? Is the communicatingagent an accomplice or an adversary?).There has been some recent theoretical work on theconvergence to global optima by concurrent reinforce-ment learners [?]. These results does not, however, ex-plain the convergence of individual reinforcement learn-ers when multiple global optima exists as in the caseof our experiments. Another recent work by Vidal &Durfee [?] uses the approach of a moving target func-tion to model concurrent learners. Their model requiresthe use of change, learning, retention rates and volatilitymetrics to predict the convergence properties of learn-ers. They claim to have been able to reproduce Claus &
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’2g-2g.10.4’Figure 4: Relative performance of mixed and homogeneous pairs of 0, 1 and 2-level agents with varying noise infeedback. In the �gure the trailing numbers represent the standard deviation of Gaussian noise in feedback.Boutilier's results, but do not provide corresponding de-tails. Though our results di�er from Claus & Boutilier'sresults in some fundamental ways, and we have explainedthose di�erence in this paper, we plan to analyze Our re-sults using Vidal & Durfee's framework.5 ConclusionsWe have evaluated concurrent reinforcement agents forstylized multiagent environments as studied by Claus &Boutilier [?]. Some of our results contradict the rela-tive performance presented in that paper. A recency-dominated myopic approach cures some but not all prob-lems for joint learners. Our analysis suggests that a mu-tually reinforced bias leads the joint learners to quickconvergence even if the solution reached is a suboptimalone in some cases.We categorize the learners in a hierarchy dependingon their use of models about other agents. This allowsus to develop a more e�ective 2-level learner. We alsoidentify a greedy trait in our 2-level learner that allowit to converge to the optimum faster. It appears thatexpected utility maximization is preferred to expectedutility based Boltzmann exploration for the 2-level agent.

Such a greedy attitude is useful also for the 1-level agentin mixed groups. As long as one agent is su�cientlyexplorative, the other agent can be exploitative.We plan to dynamically adjust the learning rate tobalance exploration-exploitation to avoid premature con-vergence. The learning rate adjustments can be basedon the variance of payo�s for an action. In this paper,our experiments use games with immediate feedbacks.We plan to experiments where the feedback is availableonly after a �xed number of interactions. We also plan tostudy the scalability of such systems with the number ofconcurrent learners. As the number of concurrent learn-ers increase, more uncertainty will be associated with thefeedbacks received by an agent for any of its chosen ac-tion. This is likely to aggravate the convergence problemof concurrent learners.References
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Figure 5: Individual learners on case analysis (left) and best plan (right) problems.


