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Abstract

Assumptions underlying
the convergence proofs of Reinforcement learn-
ing (RL) algorithms like Q-learning are violated
when multiple interacting agents adapt their
strategies on-line as a result of learning. Empir-
ical investigations in several domains, however,
have produced encouraging results. We system-
atically evaluate the convergence behavior of
concurrent reinforcement learning agents using
game matrices of varying complexity as studied
by Claus and Boutilier Claus & Boutilier [?].
Variants of simple RL algorithms are evaluated
for convergence under relative prominence of
global optima, feedback noise, scale up of game
matrix size, and game matrix characteristics.
Our results show surprising departures from
that observed by Claus and Boutilier, particu-
lar for larger problem sizes. We present an anal-
ysis and explanation of the experimental results
that provides insight into the nature of conver-
gence of these concurrent learners. We identify
the variants of the algorithms studied as recur-
sive modeling agents. This allows us to suggest
more effective learning agents with deeper lev-
els of nesting of beliefs about other agents. We
also discuss the effect of greedy and non-greedy
strategies on the modeling agents. Our results
show that the greedy strategy turns out to be
better for higher level modeling agents.

1 Introduction

Whereas previous research on developing agent coordi-
nation mechanisms focused on off-line design of agent or-
ganizations, behavioral rules, negotiation protocols, etc.,
it was recognized that agents operating in open, dynamic
environments must be able to flexibly adapt to changing
demands and opportunities [?]. In particular, individ-
ual agents are forced to engage with other agents which
have varying goals, abilities, composition, and lifespan.
To effectively utilize opportunities presented and avoid
pitfalls, agents need to learn about other agents and
adapt local behavior based on group composition and

dynamics. For machine learning researchers, multiagent
learning problems are challenging, because they violate
the stationary environment assumptions used by most
machine learning systems. As multiple agents learn si-
multaneously in a tightly coupled system, the feedback
received by the same agent for the same action varies
considerably. The stationary environment assumption
used by most current machine learning systems do not
hold for such rapidly changing environments.

In this paper, we evaluate the effectiveness of stan-
dard reinforcement learning techniques for learning co-
ordination strategies from feedback received due to re-
peated interaction with other agents in the environment.
The attractiveness of RL algorithms stem from the fact
that little prior knowledge of the domain or of the de-
cision mechanisms adopted by the other agent are re-
quired. For example, assumptions regarding whether
other agents are friendly or hostile are not necessary
for the use of RL techniques. As suggested above, no
formal guarantees exist for the convergence of concur-
rent reinforcement learners to mutually coherent poli-
cies. Researchers, however, have demonstrated partially
successful applications of standard RL methods for a
nilmber of synthetic multiagent environments [?; ?; ?;
2
Claus and Boutilier [?] have used repeated two-agent
single stage games as the environment to demonstrate
the relative efficiency of two concurrent RL agents. This
paper is largely motivated by this latter body of work.
In particular, our work begins by carefully evaluating
RL algorithms used by Claus and Boutilier. The type
of games that we study, however, is more varied than
those studied by them and helps to better identify the
strengths and weaknesses of these learning schemes. We
are also able to identify critical problems with these al-
gorithms, which in turn, allows us to develop more ap-
propriate concurrent learning schemes with significantly
improved performance over a wide variety of game types.

2 Reinforcement Learning

In reinforcement learning problems [?] reactive and
adaptive agents are given a description of the current
state and have to choose the next action from a set of
possible actions so as to maximize a scalar reinforcement



or feedback received after each action. The learner’s envi-
ronment can be modeled by a discrete time, finite state,
Markov decision process that can be represented by a 4-
tuple (S, A, P,r) where P: S x S x A~ [0,1] gives the
probability of moving from state s; to so on performing
action a, and r : S x A +— R is a scalar reward function.
Various reinforcement learning strategies have been pro-
posed using which agents can develop a policy to maxi-
mize rewards accumulated over time. For evaluating the
classifier system paradigm for multiagent reinforcement
learning, we compare 1t with the Q-learning algorithm,
which 1s designed to find a policy 7* that maximizes
reward for all states s € 5. The decision policy is repre-
sented by a function, @ : S x A — R. If an action a in
state s produces a reinforcement of R and a transition
to state s’, then the corresponding @ value is modified
as follows:

Q(s,a) —(1=-05) Q(s,a)+ 5 (R+~ 21112}@(5/’@/)).

In this paper, we present experiments with stateless
domains and immediate feedback. So, Q-values are
learned only for actions, and the update rule is simpler
(actually the learning methods studied here are much
more akin to estimator algorithms [?] but we are follow-
ing Claus & Boutilier’s framework for ease of compar-
ison). While stateless RL is indeed much simpler than
state-based RL, it allows for a much more systematic and
controlled variation of the environment to evaluate the
effectiveness of concurrent reinforcement learners. We
will see that even such “simple” domains can be used to
obtain interesting insight into the working of concurrent
RLs. Our work, as well as that of Claus and Boutilier [?]
should, however, be recognized as only the first steps to-
wards building a much needed understanding of concur-
rent learning agents in more general scenarios.

2.1 Concurrent reinforcement learners

We present four types of concurrent RL algorithm that
have been used in our experimentation. The first two of
these are based on Claus and Boutilier’s experiments [?],
while the third one is a modification of the second al-
gorithm: Individual reinforcement learners (Is):
These agents simply use the following update rule to up-
date their Q-values: @(a) = (1 —«a)*Q(a)+a*r, where
r is the reward obtained from the game matrix, and «
is the learning rate. The exploration scheme used is a
biased Boltzmann method, with action @ being chosen
with the probability
con ¥
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where A is the set of actions available to agent A. Vidal
and Durfee [?] describes such an agent as a O-level agent,
as 1t does not maintain any explicit model of other agen-
cies 1n its environment.

One-level Expected Utility based Probabilistic
reinforcement learner (1EUPSs): Q-values are cal-
culated as in the case of Is. Expected value of action a

is calculated as E(a) = ), .5 Q(a,b)Pr(b), where B is
the set of actions available to the other agent, and Pr(b)
is the probability that the other agent will choose action
b. The probabilities are calculated from the observed
frequencies with which the other agent has chosen from
its set of actions. The expected values for actions, and
not the corresponding Q-values, are used to calculate
the Boltzmann exploration probabilities'. These agents
model other agents as 0-level agents. Vidal and Durfee
refer to such agents as 1-level agents.
Two-level Expected Utility Maximizing rein-
forcement learner (2EUMs): A 2EUM models the
other agent as a IEUP. In order to calculate the action
probability distribution of this other agent, the 2EUM
assumes that the other agent has the same policy ma-
trix as itself. Using its own past history of actions, the
2EUM first calculates the probability of other agent’s
taking a particular action. Using this probability dis-
tribution, it then calculates its own expected utility of
taking any action and chooses the action that has the
maximum expected utility. These agents model other
agents as 1-level agents. Vidal and Durfee refer to such
agents as 2-level agents.

For ease of reference, in the rest of the paper, we will
refer to the Is; IEUMs, and 2EUMs as 0, 1, and 2-level
learners respectively.

3 Results

We ran a series of experiments on deterministic game
matrices of the form shown in Table 1. The game matrix
represents the feedback given to both agents when they
select any particular action combination. We have also
used stochastic games where the matrix elements con-
tain both a mean and a standard deviation, and Gaus-
sian random numbers generated with those means and
standard deviations are provided as feedbacks for given
action choices.

The goal of our experiments is to evaluate the rela-
tive capabilities of the described independent learning
strategies to quickly converge to globally optimal action
combinations, where globally optimal refers to feedback
maximization. If two strategies converge to the same av-
erage payoffs, we prefer the strategy which allows agents
to reach the corresponding policies with smaller num-
ber of interactions. For our experiments we have chosen
a = 0.1 and have initialized Q-values to 0. Initial value
of the Boltzmann exploration temperature parameter, 7,
was set to 16 and it was discounted in successive itera-
tions by a temperature discounting factor of 0.99.

Our first set of experiments were run on a 2x2 game
matrix with = n = 1 and m = y = 0.75 1. The
main surprise from these set of experiments was that
the O-level learners converged faster and more success-
fully than non-myopic 1-level learners. This is in contrast
to the results reported in Claus and Boutilier’s [?] work.

!Claus and Boutilier [?] call these agents “Joint action
learners” or JAL agents.
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Table 1: A 2x2 game matrix with deterministic payoffs.

They did not report the o values used or the exact meth-
ods of calculating the probabilities. We, however, used
the temperature values they used (initial 7 = 16 and
discount factor of 0.99) and got better results than they
reported with our choice of & = 0.1 and frequency-based
probability calculation. The performance order differ-
ence was produced by the fact that the 0-level learners
in our implementation improved more than the 1-level
learners as compared to the results reported by Claus &
Boutilier [?].
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Figure 1: Relative performance of individual T (0-0),
1EUP (Ing-1ng), IMEUP (Ing-Ing.myopic) and 2EUM
(2g-2g) learner pairs where each agent can choose one of
two available actions.

The above performance order observation is counter-
intuitive as one would think that with more information
about action choices of the other agent, agents would
learn to coordinate in fewer interactions. But, if the
probabilities of other agent’s actions are inaccurate, this
misleading information can delay convergence. Another
reason may be that the 1-level learner assumes that the
other agent is a 0-level agent. Since this assumption is
wrong, performance suffers. A key reason for the 1-level
agent’s inefficiency is that it uses all the previous inter-
actions to calculate the probabilities of the other agent
taking different actions while deciding its own action.
Thus it also takes into account the initial random moves
that other agent makes. This itself may significantly de-
lay convergence.

This observation led us to devise a variant of the 1-
level agent that we describe below:

One-level Myopic Expected Utility based Proba-
bilistic reinforcement learner (1IMEUPs): We be-
lieve that as agents learn, their probability distribution
of action choices can change quickly. Thus using the en-
tire history of action choices to construct the probability
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Table 2: Intermediate learned Q-values in a 2x2 game.

distribution may not produce useful models of opponent
behavior. In this form of learner, only the last k& (we have
used k = 10) interactions are used to generate the prob-
ability distribution. This, in effect, captures the recent
trend in the behavior of the other agent which results
in a more up-to-date model. We should also clarify that
the 2-level agents in our experiments model the other
agent as a myopic 1-level agent.

When we ran experiments with the myopic 1-level
agents we found that they not only out-performed the
non-myopic 1-level learners, but also converged faster
than 0-level learners. Thus a myopic evaluation of other
agents’ behavior better enables the learning process to
keep pace with the adaptation of the other agent. Unless
explicitly mentioned otherwise, all 1-level agents used
here and the rest of the paper are myopic in nature.
Finally, the 2-level learners out-perform all the other
strategies we have seen earlier in this section.

3.1 Effects of scale-up of policy space

We varied the number of actions available to each agent
from 2 to 5 to 10 to 20. The payoff matrices used had
only two possible values: all the diagonal elements had
the same optimal value of 1, and the off-diagonal ele-
ments had a payoff of 0.75. The results from these ex-
periments are presented in Figure 2.

In general, for the smaller problem sizes, performance
of the different agent types are in the following order:
2-2, 1-1, 0-0 (see Figure 1). But as we increase the ac-
tion space, i.e.; allowing more actions per agent, the 1-1
scenarios converge at a suboptimal value, even though,
the rate of convergence is still better than the 0-0 agents
(see Figure 2). The 0-0 and 2-2 scenarios still converge
optimally.

A plausible explanation of the quick convergence in
the case of 1-1 scenarios i1s that there is insufficient ex-
ploration of the state space, resulting in premature con-
vergence. Let us consider a sample Q-value matrix for
2 agents with 2 actions per agent. Suppose at some in-
termediate state, the Q-values learnt are as shown in
Table 2. Let p and 1 — p be the observed probabilities of
agent B taking actions b0 and b1. The expected utilities
for agent A’s two actions can then be calculated as

E(a0) = p(v+96) + (1 —pjv=pd +v,

E(al) =pv+ (1-p)(v+d)=v+ (1L -p)d
Let us suppose p > 0.5, 1.e., p > 1 —p. Then, from the
above we have F(a0) > F(al). The probabilities of dif-
ferent action choices for a 1-level learner varies directly
as the expected utility of those actions. The higher ex-
pected utility for action a0, increases the probability of
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Figure 2: Relative performance of individual I (0-0), IEUP (1ng-1ng), IMEUP (Ing-1ng.myopic) and 2EUM (2g-2g)
learner pairs with scale up of problem size. The numbers between the periods refer to the number of actions available

to an agent.

agent A taking action a0, and this probability increases
with the frequency with which A have seen B taking ac-
tion b0. Therefore, with a larger value of p, the expected
utility of action a0 for agent A increases, resulting in
a0 being chosen more frequently. This makes the 1-level
agent more exploitative in nature. A similar analysis ap-
plies for agent Band results in its choice of action b0 if
it sees A choosing a0 more often. This means that there
1s mutual reinforcement for exploiting small differences
in learned policy values. For a 0-level agent the utilities
of each action are difficult to calculate for the same sce-
nario as the Q-values will evolve differently. But in the
absence of the additional multiplicative probability fac-
tors, the two actions are likely to be closer in estimated
utility compared to the 1-level agents. This means that
the O-level agent would continue to explore longer than
the 1-level agents.

The mutual bias in the case of 1-1 agents allow for
their relatively quick convergence to the global optimum
when initial samplings produce higher Q-values for op-
timal action combinations. The downside of this bias is
the convergence to suboptimal choices when these policy
elements have higher estimates from initial samplings.

As problem size increases, each action gets fewer eval-
uations during the initial explorative phase. As such,
there 1s a greater chance that some suboptimal action
combination will be estimated to have a higher payoff
than the optimal combinations. A plausible fix to this
problem would be to extend the initial exploration phase
should be extended by choosing an appropriate temper-
ature schedule as problem sizes increases, e.g., by in-
creasing the initial temperature or the discounting fac-
tor in the Boltzmann exploration mechanism. This fix,
unfortunately, will also cause the learning curve of 1-1
scenarios to rise slowly and it is not clear a priori if the
1-1 scenarios will then converge any faster than the 0-0
scenarios.

The premature convergence of 1-1 scenarios can be
avoided if the Q-values represent the actual pay-off struc-
ture before the agents start exploiting. This can also be

achieved by increasing the learning rate (the « value in
the Q-value update rule). The higher learning rate en-
ables actual pay-off values to be estimated with less num-
ber of interactions. This is particularly true in the ab-
sence of noisy payoff. In such cases, a shorter exploratory
phase may be sufficient to learn accurate estimates of ac-
tion combinations and as such will produce convergence
to optimal action combinations. For a matrix size of
10 and a = 0.25 the agents converge optimally. But
this a value is not sufficient for optimal convergence for
much larger problems. As « values have to be contin-
ually increased for larger problem sizes, such schemes
will be ineffective in noisy domains, as larger values of «
will produce wide fluctuation in policy values over time
and can actually slow down convergence. A preferred
approach to attacking the premature convergence prob-
lem might be to combine the above two approaches, i.e.,
to use higher a values and longer exploratory phase as
problem size increases.

We also considered the two agents using different
strategies, e.g., one of the agents being 1-level whereas
the other being a 0-level agent (we will refer to this sit-
uation as a 1-0 scenario), and so on. We conducted ex-
periments with m = 0.75 in 2-1, 1-1, 1-0 scenarios and
observed that the 2-1 scenarios worked better than the
1-0 scenarios which, in turn, worked better than the 0-
0 scenarios. More importantly, the 1-0 scenarios worked
better than the 1-1 scenarios. Actually, the 1-0 scenarios
always converge optimally for problem sizes up to 20, the
largest problems we have experimented with. In the 1-0
scenarios, the exploitative behavior of the 1-level learner
is compensated by the explorative behavior of the 0-level
learner.

Probabilistic versus deterministic action choices
in higher level agents

Instead of using a probabilistic (non-greedy) measure for
selecting action, we used a greedy utility maximization
strategy for the 2-level agents so far, i.e., the action cho-
sen by 2EUM is given as arg maxqse4 EU(a), where A



is the action set for the agent (this is a deterministic

choice). We implemented a non-greedy version of the 2-

level agent which uses a Boltzmann exploration scheme

to choose its action. In this scheme, the probability of
BU(a)

crp( 7 U)m . Since this

D oiea cop(FHE)
agent uses the expected utilities to define a probability

distribution over its actions, we call it a Expected Utility
based Probabilistic agent, or 2EUP agent. On the flip
side, the 1-level agent we have used before, i.e., the my-
opic 1EUP learner, chooses action probabilistically. We
also implemented a greedy 1-level learner, an 1EUM,
which chooses the action that maximizes its expected
utility.

We performed experiments to compare the greedy
strategies with the non-greedy strategies. If both learn-
ers are greedy 1-level agents, they converge immediately
to the first action combination they choose (as the corre-
sponding payoff is then more all other actions) and hence
these agents were not used together in any further ex-
periments. The 2-level agents with non-greedy strategy
converge prematurely and take more interactions to con-
verge than 2-level agents with greedy strategies (see Fig-
ure 3). The greedy 2-level agent assumes that the other
agent is an 1EUP learner and the corresponding proba-
bility calculations to generate that agent’s action prob-
abilities temper the exploitative behavior of the greedy
2-level agents and avoids premature convergence. The
higher degree of exploitation in greedy 2-level agents
while selecting its own action after forming the action
probability distribution about the other agent causes
faster convergence compared to the non-greedy 2-level
agents.

We also performed experiments with the 1(greedy)-0
and 2(non-greedy)-1(non-greedy) scenarios. Though the
convergence speed of this 1-0 and 2-1 scenarios are simi-
lar, only the 2-1 scenarios show premature convergence.
The overall message from all this seems to be that the
greedy versions of the 2-level learners, 2EUMs, are the
best strategies to be used in homogeneous cooperative
groups. The best mixed group in our experiments is the
2(greedy)-1(non-greedy pair).

choosing action a is given by

3.2 Effects of prominence of global optima

In this series of experiments, we we varied h, the promi-
nence of global optima compared to other solutions, by
varying the off-diagonal elements in the payoff matrix.
We set the diagonal elements to be 1 and created sev-
eral game matrices with off-diagonal values of 0, 0.25,
0.5, 0.75. The corresponding & values are 1, 0.75, 0.5,
and 0.25 respectively. All the four strategies took more
time to converge as h is decreased. Of greater concern
is the fact that convergence to sub-optimal solutions can
increase with decreasing & if initial exploration is lim-
ited. This happens in our experiments if either the ini-
tial temperature or the temperature discounting factor
in the Boltzmann exploration scheme is relatively small.
Any constant value for the discount factor will cause
the premature convergence problem for sufficiently large

problem sizes. A solution to this problem is to use larger
factors for larger problem sizes.

3.3 Effects of noisy feedback

In the experiments reported above, the feedback was de-
terministic. In this set of experiments, we used payoff
matrices with off-diagonal element values of 0.75 and
varied the amount of noise associated with the feedback
(see Figure 4). Gaussian noise with zero-mean and vary-
ing standard deviation values were used for every action
combination. The standard deviation was varied from 0
(deterministic payoff) to 0.5. As noise is increased, the
agents take longer to converge to the global optima.

3.4 Varying matrix characteristics

We provided two 0-level agents with two distinct pay-
off matrices for the same action choices. Such ”games”
are not necessarily cooperative in nature. In this pa-
per, however, we have deliberately chosen payoff matri-
ces such that the game is not competitive in the sense
of the corresponding game being a zero-sum one. Two
particular variations of matrix types, and corresponding
problems, are described below (the variables in the fol-
lowing correspond to Table 2):

Case analysis: Agent A’s clear choice is to choose
action a0, 1.e., 4 > my, and y4 > na. For agent
B, though there were no obvious choices. However,
yp > xp, and hence, once agent A commits to action a0,
agent B learns to choose action b1. Results are shown in
figure 5.

Best plan: In these games, x4 is better than all other
matrix values for agent A, and x g 1s better than all other
matrix values for agent B. Over time, the agents learn
to choose a0 and b0 respectively 5.

4 Related work

Previous work on using reinforcement learning for co-
ordinating multiple agents [?; ?] have relied on explicit
information sharing. We, however, concentrate on sys-
tems where agents share no problem-solving knowledge.
Agents that learn independently and autonomously
without communication are not affected by communica-
tion delays (due to other agents being busy) or failure of
a key agent (who controls information exchange or who
has more information), and do not have to be worry
about the reliability of the information received (Do I
believe the information received? Is the communicating
agent an accomplice or an adversary?).

There has been some recent theoretical work on the
convergence to global optima by concurrent reinforce-
ment learners [?]. These results does not, however, ex-
plain the convergence of individual reinforcement learn-
ers when multiple global optima exists as in the case
of our experiments. Another recent work by Vidal &
Durfee [?7] uses the approach of a moving target func-
tion to model concurrent learners. Their model requires
the use of change, learning, retention rates and volatility
metrics to predict the convergence properties of learn-
ers. They claim to have been able to reproduce Claus &
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Figure 3: Relative performance of mixed and homogeneous
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Figure 4: Relative performance of mixed and homogeneous pairs of 0, 1 and 2-level agents with varying noise in
feedback. In the figure the trailing numbers represent the standard deviation of Gaussian noise in feedback.

Boutilier’s results, but do not provide corresponding de-
tails. Though our results differ from Claus & Boutilier’s
results in some fundamental ways, and we have explained
those difference in this paper, we plan to analyze Our re-
sults using Vidal & Durfee’s framework.

5 Conclusions

We have evaluated concurrent reinforcement agents for
stylized multiagent environments as studied by Claus &
Boutilier [?]. Some of our results contradict the rela-
tive performance presented in that paper. A recency-
dominated myopic approach cures some but not all prob-
lems for joint learners. Our analysis suggests that a mu-
tually reinforced bias leads the joint learners to quick
convergence even if the solution reached is a suboptimal
one in some cases.

We categorize the learners in a hierarchy depending
on their use of models about other agents. This allows
us to develop a more effective 2-level learner. We also
identify a greedy trait in our 2-level learner that allow
it to converge to the optimum faster. It appears that
expected utility maximization is preferred to expected
utility based Boltzmann exploration for the 2-level agent.

Such a greedy attitude is useful also for the 1-level agent
in mixed groups. As long as one agent is sufficiently
explorative, the other agent can be exploitative.

We plan to dynamically adjust the learning rate to
balance exploration-exploitation to avoid premature con-
vergence. The learning rate adjustments can be based
on the variance of payoffs for an action. In this paper,
our experiments use games with immediate feedbacks.
We plan to experiments where the feedback is available
only after a fixed number of interactions. We also plan to
study the scalability of such systems with the number of
concurrent learners. As the number of concurrent learn-
ers increase, more uncertainty will be associated with the
feedbacks received by an agent for any of its chosen ac-
tion. This is likely to aggravate the convergence problem
of concurrent learners.
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