
Co{adaptation in a TeamThomas D. Haynes and Sandip Sen600 South College Ave.Department of Mathematical & Computer Sciences,The University of TulsaTulsa, OK 74104-3189 USAResearch partially supported by NSF Research InitiativeAward IRI{9410180.This is a preprint of an article that is going to appear in Inter-national Journal of Computational Intelligence and Organizations(IJCIO) sometime late 1996 or early 1997.
1



Co{adaptation in a Team 2AbstractWe introduce a cooperative co{evolutionary system to facilitate thedevelopment of teams of heterogeneous agents. We believe that k dif-ferent behavioral strategies for controlling the actions of a group of kagents can combine to form a cooperation strategy which e�cientlyachieves global goals. We both examine the on{line adaption of be-havioral strategies utilizing genetic programming and demonstrate thesuccessful co-evolution of cooperative individuals. We present a newcrossover mechanism for genetic programming systems in order to fa-cilitate the evolution of more than one member in the team during eachcrossover operation. Our goal is to reduce the time needed to evolvean e�ective team.1 IntroductionRussell and Norvig (Russell and Norvig, 1995) de�ne an agent as anythingwhich can be viewed as perceiving its environment through sensors and act-ing upon that environment through e�ectors. Insects, animals, robots, andhumans all clearly fall into this de�nition. We can also consider software pro-grams to be agents; the environment is the operating system and system callsare sensors and e�ectors. With the transition of the Internet to the Informa-tion Superhighway, we are entering an age where the information available atour �ngertips exceeds our capacity to process it. The Internet is ever grow-ing and new protocols are developing. (These protocols include proprietarydatabases, web page layouts, etc.) Just as we cannot hope to keep up withthe explosive growth of the Internet, we cannot expect one software agent tohandle all of the emerging data formats.What we can envision is a society of interacting agents, exchanging in-formation via a standard language, such as KQML (Barbuceanu and Fox,1995; Finin et al., 1994). (Such dialog could be free or subject to marketpressures.) Agents would be able to translate a data format, integrate know-ledge from other agents, broker services, etc. Several surveys have been madeinto how human organizational theory can be leveraged into computationalagent societies (Fox, 1981; Malone, 1987; Malone, 1990; Mullen and Wellman,1995). The present work compliments this body of literature by providinga novel use of evolutionary algorithms for generating a team of co{adaptedagents that perform e�ectively in their environment.



Co{adaptation in a Team 3Coordination of the actions of agents is one of the key research topicsin multiagent systems (MAS) (Lesser, 1995; Malone, 1987; Shaw, 1996).Distributed arti�cial intelligence (DAI) researchers study both organizationalbehavior (Fox, 1981; Malone, 1987; Robbins, 1993) and adaptive behavior innature (Gotwald, Jr., 1995; Krebs and Davies, 1993) to gain insight as tohow groups e�ectively interact during problem solving. We are interested inhow groups form, maintain common purpose, and learn how to adapt theirindividualistic goals to a common group goal. In this research we considerthe latter problem and investigate a domain in which simple greedy behaviormust be adapted to cooperative group behavior. Such mutual adaptationand learning is of paramount importance to designers of agent groups andsocieties (Wei� and Sen, 1996; Sen, 1996).Genetic programming (GP) (Koza, 1992) is an o�shoot of genetic al-gorithms (GA) (Holland, 1975), and e�ectively performs an implicit parallelsearch through the problem space. A population composed of random pro-grams, or chromosomes, are constructed out of a domain speci�c language.Each chromosome can be evaluated by a domain speci�c �tness function.Chromosomes are then selected for the next generation, with higher scoringchromosomes being more likely to be picked. Chromosomes undergo repro-duction in a process similar to that seen in biological systems.We have utilized genetic programming to evolve behavioral strategieswhich enabled a team of loosely{coupled agents to cooperatively achieve acommon goal (Haynes and Sen, 1996; Haynes et al., 1995b). Since the agentsshared the same behavioral strategy, they were homogeneous, i.e., each pop-ulation member represented the program of k agents. A simple algorithm tomodel the actions of others is to believe that they behave as you would in thesame situation (Haynes et al., 1996). With homogeneous agents, the agentscan employ this algorithm since their models of other agents matches the ac-tions of others. A key issue in DAI research is how can heterogeneous agentscooperate to form a successful team. In this paper, we extend our researchfrom the evolution of homogeneous agents to the evolution of heterogeneousagents in a team. In this paper, each chromosome in the population explicitlyrepresents k programs, each corresponding to an agent.Our core problem is that of credit assignment, i.e., how to fairly rewardan individual agent for its contributions to the group goal. When individualagents perform independent tasks in a shared environment, it is relativelysimple to distribute credit. As the goals of the individual start to overlap



Co{adaptation in a Team 4those of the group, the distribution of credit becomes problematic: if it is theinteraction of two individuals that achieves the goal, how do we determine thedistribution of credit? Suppose the �rst agent did nothing to aid the second,its presence was su�cient for the task to be done. Should both agents get anequal share of the credit? What if by the �rst agent helping just a little, thetask was done faster or cheaper? Should the �rst agent receive equal creditin both scenarios?We address this problem by evolving individuals in the context of a team.The credit goes not to an individual, but to the team as a whole. Thus thelearning takes place in the team, but the adaptation occurs in individuals.Consider a scenario where one member of a team of k individuals is signi�c-antly more e�ective than the others in realizing the team's goals. If the teamperformed well, the underlying genetic algorithm will most likely select it toundergo recombination into the next generation. The single agent is not re-warded directly. When the team undergoes recombination with another team,individual members are stochastically selected, without regard to contribu-tion to the team's goals, for adaptation. Either the e�ective member aids theother team's learning or the ine�ective members can engage in learning fromthe other team. On the average, over time the ine�ective members will adaptto the level of the e�ective one.While our proposed approach is a novel way to evolve a strategy for co-ordinating a group of agents, the process of generating the strategy is notdistributed in nature. That is, agent teams are evolved as a whole and thereis no individual learning being performed by each agent. Even though indi-vidual agents do not control the adaptation process, since the GP is concur-rently adapting the team members, we believe \co-adaptation" is the properterm to describe the evolutionary process. Once endowed with the evolvedbehaviors, each agent is completely autonomous in its interactions with boththe environment and other team members, as there is no centralized control.We use the predator/prey or pursuit problem as a testbed for our exper-iments with evolving heterogeneous agent groups. Though this problem doesnot provide all of the possible challenges for heterogeneous groups, it is su�-ciently complex and provides a good starting point. The predator{prey gameis a well studied stylized domain which researchers in multiagent systemshave utilized to evaluate organizations, control structures and messaging sys-tems (Stephens and Merx, 1989; Stephens and Merx, 1990). The goal is forfour predator agents to capture a prey agent by surrounding it orthogonally.



Co{adaptation in a Team 5Although all the agents in this domain have the same capabilities, in a givenpursuit di�erent agents might be required to play di�erent group roles. Con-sider the analogous situation of a team of hunters chasing a target. Animalhunters can adopt roles in the hunt: one scouts out the quarry, one ushes thequarry, and another kills the quarry. The roles are dynamically allocated to�t the state of the current hunt. Each hunter must be capable of performingeach role.The key aspects of the domain are that agent groups must be e�ectivelycoordinated while retaining individual autonomy and that groups must beable to anticipate and adapt their problem solving technique to new and de-manding situations. An o�{line design of behavioral strategies for the agentsis bound to be limited in its applications as all possible interactions cannotbe anticipated at design time. Thus we are interested in on{line adaptivemechanisms for tailoring group behavior.Agents, and in particular, groups of agents are becoming increasinglycommonplace in the real world. Although we use an arti�cial problem do-main, the methodology we investigate is clearly promising enough to addressbroader challenges in the future. Genetic algorithms were once much ma-ligned for working with benchmark problem suites, but nowadays almost allapplications are in engineering �elds (Davis, 1991). Our work will show thepotential for using GPs in developing e�ectively coordinated multiagent sys-tems. We plan to further investigate real{life agents like coordinated meetingschedulers and cooperative controllers with the proposed methodology. Butwe have to develop the methodology using a well-understood problem domainwhich can be e�ectively simulated and in which we have enough data avail-able to compare our methodology with that of other techniques that have beenused in the domain. The predator-prey domain perfectly suits this bill.The rest of this paper is laid out as follows: Section 2 presents our method-ology for coordinating agent groups. Section 3 introduces the pursuit domain.Section 4 provides an overview of genetic programming, presents how we eval-uate predator{prey games, and describes the experimental setup. Section 5presents our crossover strategy for improving the learning of the team. Sec-tion 6 compares the utility of the crossover strategies as they evolve teams.Section 7 wraps up our research into team formation. Section 8 points outhow this work can be extended.



Co{adaptation in a Team 62 Coordination of Agent GroupsThe underlying goal of our research is to generate programs for the coordin-ation of cooperative actions from a group of autonomous agents which areinitially uncooperative. The agents must adapt from greedy local behaviorto working towards a common goal. In e�ect, we want to evolve behavioralstrategies that guide the actions of agents in a given domain. The identi�c-ation, design, and implementation of strategies for coordination is a centralresearch issue in DAI (Bond and Gasser, 1988). Current research techniquesin developing coordination strategies are mostly o�{line mechanisms that useextensive domain knowledge to design from scratch the most appropriate co-operation strategy. In most cases a coordination strategy is chosen if it isreasonably good.In (Haynes et al., 1995b), we presented a new approach for developingcoordination strategies for multiagent problem solving situations, which isdi�erent from most of the existing techniques for constructing coordinationstrategies in two ways:� Strategies for coordination are incrementally constructed by repeatedlysolving problems in the domain, i.e., on{line.� We rely on an automated method of strategy formulation and modi�c-ation, that depends very little on domain details and human expertise,and more on problem solving performance on randomly generated prob-lems in the domain.Our approach for developing coordination strategies for multi{agent prob-lems is completely domain independent, and uses the strongly typed geneticprogramming (STGP) paradigm (Montana, 1995), which is an extension ofGP. To use the STGP approach for evolving coordination strategies, thestrategies are encoded as symbolic expressions (S{expressions) and an evalu-ation criterion is chosen for evaluating arbitrary S{expressions. The mappingof various strategies to S{expressions and vice versa can be accomplished by aset of functions and terminals representing the primitive actions in the domainof the application. Evaluations of the strategies represented by the structurescan be accomplished by allowing the agents to execute the particular strategiesin the application domain. We can then measure their e�ciency and e�ective-ness by some criteria relevant to the domain. Populations of such structuresare evolved to produce increasingly e�cient coordination strategies.



Co{adaptation in a Team 7In this work we examine the rise of cooperation strategies without implicitcommunication. In our previous research, the developed strategies had impli-cit communication in that the same program was used to control the predatoragents. This removal of implicit communication is achieved by having eachpredator agent being controlled by its own program. Such a system solves acooperative co{evolution problem as opposed to a competitive co{evolutionproblem as described in (Angeline and Pollack, 1993; Haynes and Sen, 1996;Reynolds, 1994). We believe that cooperative co{evolution provides oppor-tunities to produce solutions to problems that cannot be solved with implicitcommunication.3 Pursuit DomainWe have used the predator{prey pursuit game (Benda et al., 1986) to testour hypothesis that useful coordination strategies can be evolved using theSTGP paradigm for non{trivial problems. This domain involves multiplepredator agents trying to capture a mobile prey agent in a grid world bysurrounding it. The predator{prey problem has been widely used to test newcoordination schemes (Gasser et al., 1989; Korf, 1992; Levy and Rosenschein,1992; Stephens and Merx, 1989; Stephens and Merx, 1990). The problem iseasy to describe, but extremely di�cult to solve; the performances of eventhe best manually generated coordination strategies are less than satisfactory.We showed that STGP evolved coordination strategies perform competitivelywith the best available manually generated strategies.The original version of the predator{prey pursuit problem was introducedby Benda, et al. (Benda et al., 1986) and consisted of four blue (predator)agents trying to capture a red (prey) agent by surrounding it from four direc-tions on a grid{world. Agent movements were limited to either a horizontalor a vertical step per time unit. The movement of the prey agent was random.No two agents were allowed to occupy the same location. The goal of thisproblem was to show the e�ectiveness of nine organizational structures, withvarying degrees of agent cooperation and control, on the e�ciency with whichthe predator agents could capture the prey.The approach undertaken by Gasser et al. (Gasser et al., 1989) allowedfor the predators to occupy and maintain a Lieb con�guration (each predatoroccupying a di�erent quadrant, where a quadrant is de�ned by diagonals



Co{adaptation in a Team 8intersecting at the location of the prey) while homing in on the prey. Thisstudy, as well as the study by Singh (Singh, 1990) on using group intentionsfor agent coordination, lacks any experimental results that allow comparisonwith other work on this problem.Stephens and Merx (Stephens and Merx, 1989; Stephens and Merx, 1990)performed a series of experiments to demonstrate the relative e�ectivenessof three di�erent control strategies. They de�ned the local control strategywhere a predator broadcasts its position to other predators when it occupiesa neighboring location to the prey. Other predator agents then concentrate onoccupying the other locations neighboring the prey. In the distributed controlstrategy, the predators broadcast their positions at each step. The predat-ors farther from the prey have priority in choosing their target location fromthe preys neighboring location. In the centralized{control strategy, a singlepredator directs the other predators into subregions of the Lieb con�gura-tion. Stephens and Merx experimented with thirty random initial positionsof the predators and prey problem, and discovered that the centralized controlmechanism resulted in capture in all con�gurations. The distributed controlmechanism also worked well and was more robust. They also discovered theperformance of the local control mechanism was considerably worse. In theirresearch, the predator and prey agents took turns in making their moves. Webelieve this is not very realistic. A more realistic scenario is for all agents tochoose their actions concurrently. This will introduce signi�cant uncertaintyand complexity into the problem.Korf (Korf, 1992) claims in his research that a discretization of the con-tinuous world that allows only horizontal and vertical movements is a poorapproximation. He calls this the orthogonal game. Korf developed severalgreedy solutions to problems where eight predators are allowed to move or-thogonally as well as diagonally. He calls this the diagonal game. In Korf'ssolutions, each agent chooses a step that brings it nearest to the predator.A max norm distance metric (maximum of x and y distance between twolocations) is used by agents to chose their steps. The predator was capturedin each of a thousand random con�gurations in these games. But the maxnorm metric does not produce stable captures in the orthogonal game; thepredators circle the prey, allowing it to escape. Korf replaces the previouslyused randomly moving prey with a prey that chooses a move that places itat the maximum distance from the nearest predator. Any ties are brokenrandomly. He claims this addition to the prey movements makes the problem



Co{adaptation in a Team 9considerably more di�cult.Manela and Campbell investigated the utility of N �M (predators �prey) pursuit games as a testbed for DAI research. (Manela and Camp-bell, 1993) They utilized genetic algorithms to evolve parameters for decisionmodules. A di�erence between their domain and the others is that the grid isbounded, and not toroidal, i.e., the neighbors of a cell on the edge are thosecells on the other edge. They found that the 4� 1 game was not interestingfor DAI research. They concluded that (M + 4)�M; M > 4; games havethe right complexity to be good testbeds. We believe their argument is invalidin our domain where the grid world is toroidal. One bene�t of a boundedgrid world is that teams of size two and three can e�ect a capture of the preyby trapping it against the walls. By removing the bounds, the 4� 1 gamebecomes interesting for DAI research.In our prior research (Haynes et al., 1995b; Haynes et al., 1995a), wehave utilized genetic programming to evolve a behavioral strategy to controlall of the predator agents in their pursuit of the prey. Each chromosomerepresented a behavioral strategy which was employed by all of the predatoragents. We compared the best strategy evolved by the genetic programmingsystem against our implementations of Korf's algorithms. We found that theevolved strategy was comparable to the hand-crafted ones. Furthermore, wehave determined that this problem is deceptively simple: if the agents have nomemory and are no allowed communication, there exist simple prey strategies(such as sit still or move in a straight line) which consistently evade captureby the predator strategies.4 Evolving Coordination Strategies4.1 Genetic ProgrammingHolland's work on adaptive systems (Holland, 1975) produced a class of biolo-gically inspired algorithms known as genetic algorithms that can manipulateand develop solutions to optimization, learning, and other types of problems.In order for GAs to be e�ective, the solution should be represented as n{arystrings (though some recent work has shown that GAs can be adapted tomanipulate real{valued features as well). Though GAs are not guaranteed to�nd optimal solutions (unlike Simulated Annealing algorithms), they still pos-



Co{adaptation in a Team 10sess some nice provable properties (optimal allocation of trials to substrings,evaluating exponential number of schemas with linear number of string eval-uations, etc.), and have been found to be useful in a number of practicalapplications (Davis, 1991).Koza's work on Genetic Programming (Koza, 1992) was motivated by therepresentational constraint in traditional GAs. Koza claims that a large num-ber of apparently dissimilar problems in arti�cial intelligence, symbolic pro-cessing, optimal control, automatic programming, empirical discovery, ma-chine learning, etc. can be reformulated as the search for a computer programthat produces the correct input-output mapping in any of these domains. Assuch, he uses the traditional GA operators for selection and recombination ofindividuals from a population of structures, and applies them on structuresrepresented in a more expressive language than used in traditional GAs.The representation language used in GPs are computer programs represen-ted as Lisp S{expressions. Although GPs do not possess the nice theoreticalproperties of traditional GAs, they have attracted a tremendous number ofresearchers because of the wide range of applicability of this paradigm, andthe easily interpretable form of the solutions that are produced by these al-gorithms (Angeline and Kinnear, Jr., 1996; Kinnear, Jr., 1994; Koza, 1992;Koza, 1994).A GP algorithm can be described as follows:1. Randomly generate a population of N programs made up of functionsand terminals in the problem.2. Repeat the following step until termination condition is satis�ed:(a) Assign �tness to each of the programs in the population by execut-ing them on domain problems and evaluating their performance insolving those problems.(b) Create a new generation of programs by applying �tness propor-tionate selection operation followed by genetic recombination op-erators as follows:� Select N programs with replacement from the current popula-tion using a probability distribution over their �tness.� Create new population of N programs by pairing up theseselected individuals and swapping random sub{parts of theprograms.



Co{adaptation in a Team 113. The best program over all generations (for static domains) or the bestprogram at the end of the run (for dynamic domains) is used as thesolution produced by the algorithm.In GP, the user needs to specify all of the functions, variables and con-stants that can be used as nodes in the S{expression or parse tree. Functions,variables and constants which require no arguments become the leaves of theparse trees and thus are called terminals. Functions which require argu-ments form the branches of the parse trees, and are called functions or non{terminals. The set of all terminals is called the terminal set, and the set of allfunctions is called the function set. In traditional GP, all of the terminal andfunction set members must be of the same type. Montana (Montana, 1995)introduced STGP, in which the variables, constants, arguments, and returnedvalues can be of any type. The only restriction is that the data type for eachelement be speci�ed beforehand.4.2 Experimental SetupIn our experiments, the initial con�guration consisted of the prey in the centerof a 30 by 30 grid, and the predators are placed in random non{overlappingpositions. All agents choose their action simultaneously. For the trainingcases, each team is allowed 100 moves per case. The environment is updatedafter all of the agents select their moves, and then the agents again choosetheir next action based on the updated state. Conict resolution is necessarysince we do not allow two agents to co{occupy a position. If two agents tryto move into the same location simultaneously, they are \bumped back" totheir prior positions. One predator, however, can push another predator (butnot the prey) if the latter decided not to move. The prey's movements arecontrolled by a strategy that moves it away from the nearest predator, withall ties being non{deterministically broken. The prey does not move 10% ofthe time: this e�ectively makes the predators travel faster than the prey. Thegrid is toroidal in nature, and diagonal moves are not allowed. A capture isde�ned as all four predator agents occupying the cells directly adjacent, andorthogonal, to the prey, i.e., when the predators block all the legal moves ofthe prey.A predator can see the prey, and the prey can see all the predators.However, two predators cannot communicate to resolve conicts or negoti-



Co{adaptation in a Team 12ate a capture strategy. The latter eliminates explicit communication betweenagents.4.3 Evaluation of Coordination StrategiesTo evolve coordination strategies for the predators using STGP we needto rate the e�ectiveness of those strategies represented as programs or S{expressions. We chose to evaluate such strategies by putting them to task onk randomly generated pursuit scenarios. For each scenario, a program is runfor 100 time steps. The percentage of capture is used as a measure of �tnesswhen we are comparing several strategies over the same scenario. Since theinitial population of strategies are randomly generated, it is very unlikely thatany of these strategies will produce a capture. Thus we need additional termsin the �tness function to di�erentially evaluate these non{capture strategies.The key aspect of GPs (including STGP) or GAs is that even though a par-ticular structure is not e�ective, it may contain useful substructures whichwhen combined with other useful substructures, will produce a highly e�ect-ive structure. The evaluation (�tness) function should be designed such thatuseful sub{structures are assigned due credit.With the above analysis in mind, we designed our evaluation function ofthe programs controlling the predators to contain the following terms:� After each move is made according to the strategy, the �tness of theprogram representing the strategy is incremented by (Grid width) /(Distance of predator from prey), for each predator. Thus higher �tnessvalues result from strategies that bring the predators closer to the prey,and keep them near the prey. This term favors programs which producea capture in the least number of moves.� When a simulation ends, for each predator occupying a location adja-cent to the prey, a number equal to (number of moves allowed � grid width)is added to the �tness of the program. This term is used to favor situ-ations where one or more predators surround the prey.� Finally, if a simulation ends in a capture position, an additional rewardof (4 � number of moves allowed � grid width) is added to the �tness ofthe program. This term strongly biases the evolutionary search toward



Co{adaptation in a Team 13programs that enable predators to maintain their positions when theysucceed in capturing a prey.In our experiments, the distance between agents is measured by theMan-hattan distance (sum of x and y o�sets) between their locations. We havelimited the simulation to 100 time steps. As this is increased, the capturerate will increase.In order to generate general solutions, (i.e., solutions that are not depend-ent on initial predator{prey con�guration), the same k training cases were runfor each member of the population per generation. The �tness measure be-comes an average of the training cases. These training cases can be either thesame throughout all generations or randomly generated for each generation.In our experiments, we used random training cases per generation.4.4 Encoding of Behavioral StrategiesIn Korf's implementation of the predator{prey domain, he utilized the samealgorithm to control each of the predator agents. We evolve behavioralstrategies to be used by the predator agents. Behavioral strategies are en-coded as S{expressions. Terminal and function sets in the pursuit problemare presented in Tables 1 and 2. In our domain, the root node of all parsetrees is enforced to be of type Tack, which returns the number correspondingto one of the �ve choices the prey and predators can make (Here, North, East,West, and South). Notice the required types for each of the terminals, andthe required arguments and return types for each function in the function set.Our choice of sets reect the simplicity of the solution proposed by Korf.One of our goals is to have a language in which the algorithms employed byKorf can be represented.



Co{adaptation in a Team 14Terminal Type PurposeB Boolean TRUE or FALSEBi Agent The current predator.Pred1 Agent The �rst predator.Pred2 Agent The second predator.Pred3 Agent The third predator.Pred4 Agent The fourth predator.Prey Agent The prey.T Tack Random Tack in therange of Here to Northto West.Table 1: Terminal SetFunction Return Arguments Purpose/ReturnCellOf Cell Agent A Get the celland Tack B coord of A in B.IfThenElse Type of Boolean A, If A then do BB and C Generic B else do C. (B andand C C must have thesame type.)< Boolean Length A If A < B, thenand TRUE elseLength B FALSE.MD Length Cell A Manhattanand Cell B distance betweenA and B.Table 2: Function Set



Co{adaptation in a Team 155 Establishing an Environment for TeamworkIn our earlier work, each program was represented as a chromosome in apopulation of individuals. One method to compose a team from di�erentchromosomes is to randomly selected members from the population of chro-mosomes, with each member awarded a certain percentage of the total �tness.(We could also ensure that each member of the population participates in tteams.) Each member would get the points that it de�nitely contributed tothe team's �tness score. How do we divide up the team's score among theparticipating members (chromosomes)? Is it fair to evenly divide the score?Assuming k members to a team, if the actions of one individual accountedfor a large share of the team's score, why should it only get 1k th of the score?This problem is the same as the credit assignment problem in (Grefenstette,1988). Another way to create teams is to deterministically split the popula-tion into k sized teams. Thus the �rst k individuals would always form the�rst team. The problem with this is that it imposes an arti�cial orderingon the population. The same team in generation Gi might not be formed ingeneration Gi+1 due to a re{ordering caused by the reproductive cycle.The method we employ to ensure consistency of membership of a team isto evolve a team rather than an individual. Thus each chromosome consistsof k programs. Subject to the e�ects of crossover and mutation, we areensured that the same members will form a team. This e�ectively removesthe credit assignment problem. Each team member always participates inthe same team. Thus all of the points it is awarded, for both its individualcontribution and the teams contribution, are correctly apportioned to theentire team.This approach is similar to \the Pitt approach" used for evolving Genetic{Based Machine Learning systems (DeJong, 1990). For GA based productionsystems, there are two camps as how to maintain a ruleset: the Pitt ap-proach is to maintain the entire ruleset as an individual string with the entirepopulation being a collection of rulesets, and \the Michigan approach" is tomaintain the entire population as the ruleset. In the Michigan approach thereis the credit assignment problem of how to correctly award individual rulesfor their contributions to the global solution. The Pitt approach bypasses thecredit assignment problem, in that rules are only evaluated in the context ofa ruleset. A similar mechanism as proposed in this paper has been used tosuccessfully co{evolve a set of prototypes for supervised concept classi�cation



Co{adaptation in a Team 16problems (Knight and Sen, 1995).Our method of maintaining consistency in a team does introduce a prob-lem in that what do we do for crossover? Do we allow crossover, as shownin Figure 1, to take place in the usual sense? (i.e. only one of the programsparticipates in the crossover.) Or, as shown in Figure 2, do we allow all of theprograms to participate in crossover? The �rst crossover mechanism allowsonly relatively small changes of parent structures to produce o�spring, andour conjecture is that it slows down learning. We investigate the utility ofallowing multiple programs to participate during the crossover process. Weconsider the following crossover functions:TeamTree For comparison purposes we present the method in which allagents share the same program.TeamBranch This method is simply to pick one crossover point in the chro-mosome (see Figure 1). This is the traditional GP crossover mechanism.
Chromosone i

Program 1 Program 2 Program 3 Program 4

(a)

Crossover Point

1

Program 1 Program 2 Program 3 Program 4

Chromosone j

(b)

Crossover Point

1Figure 1: Example crossover for 1 crossover point in a chromosome.TeamUniform This crossover mechanism is to adapt the uniform crossoverfunction from GA research (Syswerda, 1989) (see Figure 2). Basically



Co{adaptation in a Team 17we develop a uniform crossover mask for the programs inside a chromo-some. A \1" indicates that the programs are copied into the respectivechild, while a \0" indicates that the programs will undergo crossover.We are able to use the uniform crossover function because the numberof programs in a team is �xed. Since the programs are not atomic inthe sense that alleles in GAs are, we can randomly determine the in-teractions between the programs. An example of this is if we decidedthat the order of interaction between two parent chromosomes i andj is i(3241) and j(4123), and the bit mask is f1001g, then this wouldproduce the children s(3(2X1)(4X2)1) and t(4(2X1)(4X2)3). This isrepresented visually in Figure 2. The programs have been re{orderedsuch that i3 is paired with j4, etc. We utilize this reordering to allowthe new crossover method to have the same exibility as the others, i.e.any branch in one chromosome can engage in crossover with any branchin another chromosome.Some recent work in competitive co-evolution has involved concurrentlyevolving agents that compete against each other. Hence individuals fromtwo co-evolving populations can be used to evaluate each other (Rosin andBelew, 1995; Haynes and Sen, 1996; Grefenstette and Daley, 1996). Thismode of evolution o�ers the possibility of a graded variation of environmentalchallenges which can allow for more e�ective agents to be developed overtime (as opposed to preselecting a set of standard problems for evaluatingagents). Work in competitive co-evolution has also included island models,which involves evolving subpopulations with occasional migration (Tanese,1989).Our team strategies, TeamBranch and TeamUniform, may be thought ofas cooperative co-evolution processes where each subpopulation consists ofprograms that represent one of the agents. There is an exchange of geneticmaterial between two agents from two di�erent subpopulations through thecrossover operation; this exchange of information may be likened to migrationbetween the subpopulations. In our implementation, we dictate that the k-thteam or structure is formed by the k-th member of each subpopulation. Theevaluation of a team is shared by all the members of the team. In the work ofPotter et al., a team is formed by combining a member of the current subpop-ulation with the best members received from the other subpopulations (Potteret al., 1995). The individual member of the subpopulation then receives an



Co{adaptation in a Team 18evaluation corresponding to the performance of the group thus formed. In ourwork, we can view each team member to be receiving the same evaluation asthe entire team. Our assumption of allowing sharing of genetic informationbetween team members is also used by other GA researchers working on theproblem of cooperative co-evolution (Bull and Fogarty, 1996).



Co{adaptation in a Team 19
(a)

Crossover Points

Program i3 Program i2 Program i4 Program i1

Parent i

1 2

(b)

Program j4 Program j1 Program j2 Program j3

Crossover Points

Parent j

1 2

Program i3 Program i1

Child s

Program s2 Program s3

(c)

Program j4 Program j3

Child t

Program t2 Program t3

(d)Figure 2: Example uniform crossover for the mask f1001g. (a) has Parent iwith an ordering of (3241). (b) has Parent j with an ordering of (4123). (c)has Child s, with two branches created via crossover. (d) has Child t, withtwo branches created via crossover.



Co{adaptation in a Team 206 ResultsIn a series of experiments, we have evaluated the di�erent crossover mechan-isms for evolving teams comprised of heterogeneous agents. The basic setupfor each experiment are as follows: a population size of 600, a maximum of1000 generations, a crossover rate of 90% and a mutation rate of 10% (weemploy the standard mutation operator utilized in GP, i.e., if a chromosomeis selected for mutation, than randomly pick a node and replace its subtreewith a randomly generated subtree). In each generation, each chromosomeis evaluated for the same three random initial placements of predators andprey. We ran each approach with the same six di�erent seeds for the randomnumber generator. The averaged results for the best �tness per generationfor the three crossover functions are shown in Figure 3.While TeamBranch initially learns faster than TeamTree, TeamTree isable to learn to the same degree of cooperation. The primary signi�canttrend that we observe from our experiments is that while TeamBranch ini-tially learns faster than TeamUniform, TeamUniform is able to noticeablyoutperform TeamBranch in the long run. This shows that it can be moree�ective to evolve a set of possibly heterogeneous agents rather than using ahomogeneous agent group.In examining the movements of the TeamUniform agents, we realized oneof the bene�ts of heterogeneous predator agents: they are able to move indi�erent directions when in the same quadrant with respect to the prey'sorthogonal axis. One of the observed behaviors in both the evolved homo-geneous and hand-crafted behavioral strategies is that if two predators werein the same quadrant, then they would select the same action (Haynes et al.,1996). This behavior would lead to deadlock situations, for example if pred-ators 1 and 2 are lined up on the horizontal axis with respect to the prey P,then the predator stuck behind the other one cannot get to a capture posi-tion. With the heterogeneous behavioral strategies, deadlock situations havethe potential to be avoided.
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Co{adaptation in a Team 227 ConclusionsComputational agent societies are rapidly approaching. As human users cometo expect more capabilities from computational resources, more e�ort will bespent in developing agent groups that can cooperate to meet a variety ofuser needs. Whereas agent developers can invest time in developing moreextensive and e�ective agent capabilities, agents from di�erent developersmust learn to reduce conict for resources via cooperation. Due to the natureof open environments, such learning is best done on-line, through interactionwith other agents.We have presented a learning strategy that improves coordination throughan evolutionary algorithmic approach. The heterogeneous agents are able toimprove co-adaption via the introduction of a new genetic programming cros-sover function, TeamUniform. Instead of limiting crossover to one result pro-ducing branch, multiple result producing branches are capable of exchanginggenetic material.We have also found that heterogeneous agents have been better able toexcel compared to homogeneous agent groups in a symmetrical domain. Itwould seem likely that heterogeneous agents would su�er from the lack ofsimple models of others (a capability which can be exploited in homogeneousagent systems). But we found that if heterogeneous agents are presented withessentially the same input, i.e., a similar state induced by symmetry, they canstill perform di�erent actions. This asymmetry of behavioral strategies allowsthe agents to avoid potential deadlock situations.8 Future WorkThe predator{prey domain is very symmetrical, which favors the emergenceof homogeneous agents. To explore the degree of similarity of di�erent be-havioral strategies in a group, we need to develop some tools to enable us toanalyze the similarity of two chromosomes; both in semantical and syntacticalcontent. This is evidenced by there being two team members with di�erentsubtrees, but with identical results.We also want to explore the emergence of co{operative evolution in thecontext of domains which are asymmetrical. We believe that in this typeof scenario, specialists will develop. In the context of the animal hunting



Co{adaptation in a Team 23example, we would expect one scout, one usher, and one attacker to develop.Role assignments can be static or be adaptive to take advantage of varyingenvironmental conditions.We envision evolving a team consisting of generalists and specialists.Some critical tasks are always handled by the specialists, while generalistsswitch back and forth between tasks as environmental demands vary. In acomputer network, any machine can host user sessions. But software, such asa compiler or word processor, might be restricted to certain machines due tolicensing agreements. Also, certain machines in the network might have spe-cial hardware, such as printers, modems, plotters, etc. A process schedulerand loader could be evolved to evenly spread tasks amongst the machines.We are also interested in evolutionary mechanisms that allow quick ad-aptation to environmental changes. The use of responsive adaptation mech-anisms would allow us to evolve agent groups and modify them as the en-vironmental demands vary. Such adaptation schemes could also include theaddition of new members to the team, and as a consequence a reorganizationof the team that will enable the most e�ective utilization of their resources.ReferencesAngeline, P. and Kinnear, Jr., K. E., editors (1996). Advances in GeneticProgramming 2. MIT Press, Cambridge, MA, USA.Angeline, P. J. and Pollack, J. B. (1993). Competitive environments evolvebetter solutions for complex tasks. In Proceedings of the Fifth Inter-national Conference on Genetic Algorithms, pages 264{278. MorganKaufmann Publishers, Inc.Barbuceanu, M. and Fox, M. S. (1995). COOL: A language for describingcoordination in multiagent systems. In Lesser, V., editor, Proceedingsof the First International Conference on Multi{Agent Systems, pages17{24, San Francisco, CA. MIT Press.Benda, M., Jagannathan, V., and Dodhiawala, R. (1986). On optimal co-operation of knowledge sources - an empirical investigation. TechnicalReport BCS{G2010{28, Boeing Advanced Technology Center, BoeingComputing Services, Seattle, Washington.
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