
An automated distributed meeting schedulerSandip SenDepartment of Mathematical & Computer SciencesUniversity of Tulsa,600 South College Avenue,Tulsa, OK 74133e-mail: sandip@kolkata.mcs.utulsa.eduIntroductionA central thesis in our research has been the claim that a number of routine informationprocessing needs in organizations can be e�ciently automated. As such, we are interestedin designing and implementing software systems that automate and share information pro-cessing tasks of associated human users. The bene�t of such software is two-fold: they allowusers to concentrate on more productive tasks, and they improve the quality of informationprocessing by preventing errors that might be introduced by human users due to the routineand tedious nature of the job in question.In particular, we have studied the problem of e�ciently automating the process of schedul-ing meetings between employees in an organization. Our approach to meeting scheduling,in contrast to most of the currently available software for centralized calendar managementand meeting scheduling, is a distributed one, where each employee in the organization isprovided with an automated (computational) meeting scheduling agent. When a user wantsto schedule a meeting with other users, he/she inputs a meeting request to the associatedmeeting scheduling agent. This agent negotiates with the agents corresponding to the otherusers to schedule the meeting. Since all meeting requests and calendar accesses are routedthrough the meeting scheduling agent, it can protect the privacy of its associated user whilefollowing other preferences of this individual. The meeting scheduling agent uses the cal-endar manager software to manipulate the user's calendar, and uses the e-mail system tocommunicate messages with other meeting scheduling agents (see Figure 1).The central question in the design of a successful meeting scheduler is the following: howcan a meeting scheduling agent e�ciently negotiate with other meeting scheduling agentswithout compromising any of the constraints speci�ed by its associated user. In our previouswork [1, 2, 3] we have studied the usefulness of di�erent heuristic negotiation strategies tosolve a precisely de�ned distributed meeting scheduling (DMS) problem. We developedanalytical models of expected performance of heuristic strategy combinations, and veri�edthese expectations with experiments on simulated systems.1



Meeting

Scheduler

E-mail
Calendar
Manager

Meeting Scheduling System

User C

User D

User B

User A

Figure 1: Distributed meeting scheduling over a network of computers.Intelligent information agents in organizationsComputer networks that support human organizations provide an infrastructure for im-proving group performance through an array of collaboration tools, such as electronic mailsystems and shared �le systems. While such tools help people share, access, and manipu-late more information, they can also impair human performance through overuse or abusefrom the propagation of unnecessary information. Techniques from arti�cial intelligence canintroduce \intelligent agents" into organizational computing systems, where these agentsuse knowledge about the interests and priorities of people to perform routine organizationaltasks such as automatically screening, directing, and even responding to information [4].The usefulness of intelligent agents is further appreciated with the advent of the informationsuperhighway [5].Some of the people in a typical organization spend a large percentage of their working timein scheduling and attending meetings [6, 7]. The e�ciency of the scheduling process used andthe quality of the schedules generated, then, a�ects the working of an organization to a largeextent. Even when everyone involved in a meeting has available times to meet, the processof searching for a commonly available time in the presence of communication delays (eitherthrough electronic mail or in contacting by phone), and in the presence of other meetingsbeing scheduled concurrently, can be frustrating and lead to less than satisfactory solutions.Automating meeting scheduling is important, therefore, not only because it can save timeand e�ort on the part of humans, but also because this may lead to more e�cient schedulesand to changes in how information is exchanged within organizations. Past e�orts [8, 4] indeveloping automated meeting schedulers have met with limited success, although they areavailable in a number of o�ce software systems [9].Humans exhibit wide variations in how they manage their calendars. The variationsrange over the length of the calendars used by individuals, the number of calendars used byeach person, level of privacy desired, portability and accessibility requirements, percentage2



of scheduled meetings that are canceled and rescheduled, as well as the nature of archiving,querying, and inserting related information into the calendar. In order for an automatedcalendar management system to be accepted, it has to be exible to the varying needs ofthe user. Such a requirement bodes well for our distributed formulation of the problem, aseach user can modify his/her associated agent according to his/her own liking.Most of the commercially available software for scheduling over computer networks havebeen personal computer based systems. A good survey of the most promising of theseproducts can be found in [10]. This survey evaluates and compares the features o�ered bythe four most powerful schedule sharing systems in practice today. These four products are:ON Technology's Meeting Maker 1.5, Microsoft's Schedule+ 1.0, Now Software's Now Up-to-Date 2.0, and WordPerfect O�ce 3.0's Calendar module. The most important thing toclarify here from our point of view is that none of these systems are \automatic schedulers".These products provide the users with only a nice interface to view their own calendarsand that of other users, and in some cases �nd time intervals to propose by searching thesecalendars. When using these systems, users have to allow complete access to their calendarsby all other users. The only restriction is that the user (or a proxy) has the sole authority tomodify his/her associated calendar. As the title of the paper itself suggests, these productsare designed to \share" schedules. Similarly, in the AI community, there has been a numberof recent projects [11, 12] which assist a human user in scheduling meetings. None of these,however, completely automate the meeting scheduling process.We, however, propose to provide autonomous scheduling capabilities through restrictedinformation exchange between intelligentmeeting scheduling agents. Our approach is consid-erably more di�cult because of the signi�cantly limited information available to schedulingagents about the state of the calendar of other users. As such, multiple rounds of informationexchange between scheduling agents are often required to locate a time interval in which a re-quested meeting can be scheduled. The latter mode of meeting scheduling, however, does notrequire the intervention of the human user for each round of proposal exchange, and is likelyto be signi�cantly quicker in scheduling meetings. In addition, our proposal for autonomousscheduling can approximate the privacy and security concerns of users as speci�ed by user-modi�able constraints (these concerns are severely compromised in the above-mentionedsystems as others can freely access the user's calendar state). The distributed nature of oursystem allows for better throughput through concurrent negotiation on multiple meetings,and better fault tolerance.Distributed Meeting SchedulingWhen a user requests a meeting to be scheduled with other users, the associated meetingscheduling agent is designated as the host agent for that meeting; the agents correspondingto the other users attending the meeting are called invitee agents. A meeting is speci�ed bya number of parameters:� set of attendees,� proposed length of the meeting,� priority assigned to the meeting, 3



� a set of possible starting times on the calendar for the meeting (e.g., sometime nextweek, Friday afternoon, etc.),� a scheduling deadline,� any additional constraints.Space does not permit an enumeration of the constraints our system can handle. Some of thetypical constraints that can be handled include scheduling a meeting before/after anothermeeting, scheduling a meeting only if another meeting is scheduled, scheduling with a subsetof attendees or for a shorter length if a meeting time satisfying all the given parameterscannot be found, scheduling repeating events, etc.Our scheduling agents use contract-based negotiation [13] to �nd mutually acceptabletime slots for meetings. While the contracting framework does not capture some of thesophistication that people might employ in exceptional circumstances, it balances the needto have a exible routine to handle a range of situations, while still keeping the routinewell-de�ned and understandable enough to be embraced by a user.We will use an example to illustrate the workings of our proposed scheduler. Let usconsider a simple meeting scheduling scenario in which user A wants to meet with users Band C for an hour sometime in the next week. When user A instructs its meeting schedulingagent (in the following we name the agents after their user) to schedule this meeting, agentA will search the local calendar to �nd some hour-long free slots next week that does notconict with user A's preferences (for example, no meeting before 9 or just after lunch hours).Some of these free slots are then proposed via electronic mail to agents corresponding tousers B and C for a meeting (for example, agent A may propose to meet either at 10am onMonday or at 2pm on Wednesday). If agents B and C �nd some of these proposals agreeable(corresponding slots are free in the calendar of their respective users, and does not violateany constraints/preferences), they respond positively by electronic mail. Alternatively, theymay propose some other hours as dictated by local calendars and user preferences. Thesenegotiation cycle is repeated until a slot is found which is agreeable to all three agents, andthe meeting is scheduled for that time slot.A simpli�ed version of the scheduling protocol is given below:1. When a meeting needs to be scheduled, the host tries to �nd time intervals in itsschedule that suit the constraints of date and time. If it cannot �nd any interval, it failsand the meeting is abandoned. Otherwise, if it is the only participant in the meeting,it schedules the meeting for the best (earliest) interval. If there are other participants,the host announces a contract for the meeting to the invitees by proposing one or moreof the best intervals found.2. Each invitee receives the contract proposal(s), and tries to �nd local solutions to satisfythose contracts and send them back as bids to the host. Bids consist of time interval(s)for which the bidder (the invitee) can schedule the announced meeting. The timeinterval(s) sent as bids can simply be the subset of those announced by the host thatthe invitee has free on its calendar, or they can be counter-proposals for when to meet.4



3. The host collects and evaluates these bids. If the bids suggest a common time intervalwhich is free for the host as well, the meeting can be scheduled and the host sendsawards to the bidders. If the meeting cannot be mutually scheduled yet, the hostgenerates new proposals depending on the bids received and its own calendar andsends these o� to the bidders. It also sends rejections for bids received.4. When the bidders receive new proposals, they reply as above. On receiving an award,they check to see if those time intervals are still free. If so, they mark their calendar,recording the scheduling of the meeting. Otherwise they send back rejections.The above algorithmic steps are repeated until a satisfactory schedule is arrived at or it isrecognized that the meeting cannot be scheduled (due to an over-constrained schedule ordue to the fact that the meeting could not be scheduled before its deadline).Heuristic negotiation strategiesThough the contract net metaphor delineates the respective roles of the agents involved in acoordination process, it does not specify the local control necessary to focus the negotiationprocess. The most important questions that need to be answered before the contract-netprotocol can be applied in the DMS domain are the following:� How do hosts build contracts to propose?� How do invitees bid in response to contracts?� How do agents maintain constraints between concurrently negotiated meetings?� How do agents handle the change in problem constraints as time passes during nego-tiation?The meeting scheduling problem has been proved to be computationally intractable, andhence any realistic attempt to solve the problem has to use appropriate heuristics to �ndsatisfactory solutions. We view the DMS problem as a distributed search problem, whereeach of the agents involved in a meeting searches its calendar to �nd a time interval for themeeting, and it is required that every attendee chooses the same time interval to schedule themeeting. To �nd a common free time interval of the desired length quickly, the agents mustuse e�cient local search biases to guide the search process in �nding suitable time intervalson the calendar to use for the meeting; decide on how much information to exchange withoutlosing exibility to schedule other meetings concurrently; �nd responses to proposals thatmove the search towards a solution without violating local constraints; choose whether ornot to view tentative proposals as commitments; and locate already scheduled meetingsto reschedule when faced with new contingencies. In the following, we briey narrate our�ndings on these heuristics:Search bias: Heuristics for search biases allow agents to focus search in their calendarto �nd preferred free intervals to schedule a meeting. A search bias provides a partial orderon a given a set of alternative solutions. In the DMS domain, we have experimented withthree di�erent search biases: linear early, linear least dense, and hierarchical. Linear search5



biases (search biases that operate on a linear ordering of the search space) are more e�ectivefor a small number of agents working on short calendars; a hierarchical search bias usingtemporal abstractions of the calendar (involving months, weeks, days, hours) is more usefulfor larger organizations. When using linear early search bias, agents propose the earliestavailable time slot for a requested meeting. When using linear least dense bias, agentssearch the entire calendar and then propose a time interval with maximum free time aroundit. When using hierarchical search bias, agents scheduling a meeting �rst identify which isthe most desirable week to schedule the meeting, followed by the most desirable day withinthe chosen week, and �nally the particular time interval within that day. Whereas thelinear early search bias produces front-loaded calendar leaving room for long meetings lateron, it cannot accommodate the scheduling of meetings at short notice (and hence triggersmeeting cancellations). Linear least dense and hierarchical search biases produce evenlyloaded calendars that can more readily accommodate schedule disruptions, but can fail toschedule long meetings when the calendar is dense. These heuristics help agents in decidingwhat to propose to other agents and also to adjust their proposals as calendar states change(causing changes in problem constraints) over time.Information exchanged: As in most problems involving distributed search, there isa tradeo� between the amount of information exchanged per iteration among the meetingschedulers and the number of iterations of information exchange needed to schedule a meet-ing. If everybody sent all information to one agent, then one iteration is su�cient, and wehave a centralized scheduling scenario. To take full advantage of this situation, however,it is necessary to sequentialize the scheduling of all meetings, which severely a�ects systemthroughput. Limited, focused exchange of information to schedule meetings will in generalrequire more iterations, but will allow the agents to schedule multiple meetings concurrently,thus increasing the throughput of the system. The latter form of communication will in gen-eral require less information exchange, as all the information sent by the agents in the �rstcase may not be necessary to process a task. Furthermore, in the DMS domain, schedulershave to balance the need for e�ciency (implies sending more meeting proposals per itera-tion) with the need for maintaining privacy (propose as few intervals as possible to schedulea meeting). Our probabilistic analysis shows that, although agents can schedule meetingsquickly by sending more proposals per iteration of negotiation, the law of diminishing returnsholds back the savings obtained by exchanging more information [2]. These heuristics helpagents decide how much to share with other agents.Response mechanisms: In scheduling a meeting, the invitee agent can be passive,requiring the host to do most of the work in �nding a suitable contract, or be more activein guiding the negotiation through informative counter-proposals. For example, the inviteecan respond by accepting or rejecting the proposal, or can counter-propose another timeinterval for the meeting. Cooperative revelation of local information can greatly acceleratecoordination if coupled with proper local search control. We have developed analyticalexpectations of the savings obtained in information exchange iterations when invitee agentsrespond with counterproposals instead of just accepting/rejecting proposals from host agents.These heuristics address the question of how to construct bids in response to proposals.Use of commitment: From the time an agent proposes a time interval for a meetingto the time it receives a response from the other side, other meeting requests may arrivethat can use this interval. The agent has to decide whether or not to use the same (or6



overlapping) time intervals for simultaneous negotiations on di�erent meetings. We haveinvestigated how agents can reason about system load, expected coordination e�ort, impor-tance of meetings being processed, etc., to make a knowledgeable decision on committing totentative proposals [3]. These heuristics enable agents to avoid harmful interactions betweenconcurrently negotiated meetings.Cancellation mechanisms: When faced with changing demands on its resources, anagent may need to cancel previously scheduled meetings to accommodate new ones. Astructured framework for renegging past agreements has been developed that optimizes theutility of canceling previously scheduled meetings to accommodate new ones [1]. Theseheuristics enable agents to rework the meeting schedules as calendar state changes withtime.Adaptive scheduling: Intelligent, autonomous agents should be able to reason andadapt to changing environmental conditions. We have developed the design of an adap-tive scheduling agent that will be able to choose the most e�cient local problem-solvingbehavior, given the current environmental parameters and the local problem-solving statesof the agents involved in the negotiation process [2]. Local problem-solving behavior of themeeting scheduling agents is determined by a combination of heuristic strategy options, eachoption chosen from a set of alternatives available for the associated strategy dimension. Ourgoal has been to design the adaptive agent such that its choices are based on precise an-alytical expectations of the performance, as measured by some given performance metrics,of local problem-solving behavior. Agents that monitor their environment continually andadjust their behavior to suit changing demands imposed on the system can provide robustperformance across a wide range of situations.ImplementationWe have implemented a distributed meeting scheduling system on a workstation based com-puting environment, that utilizes the above-mentioned �ndings. Though the current imple-mentation runs on a local network of workstations, the negotiation mechanisms and encodinglanguage developed can be e�ectively used in other types of computing environments. Forexample, the same techniques can be used to implement a distributed meeting schedulingsystem that runs on personal computers. The actual implementation will de�nitely be dif-ferent depending on the communication and programming environment involved. As far aseither the problem-solving behavior of the system or the manner in which the user interactswith the system is concerned, however, no appreciable modi�cations to the proposed designis required. Additionally, such a meeting scheduling system can be con�gured for implemen-tation in a server-based computing environment as well (this type of environment is oftenused in the shared schedule implementations mentioned above). The programming languageused for the current implementation is C++.The architecture of our meeting scheduling agents is as described in Figure 2. We �rstbriey outline the functionalities of each of the components of the meeting scheduler, andthen describe their implementations in more detail. The user interacts with the meetingscheduling system through the user interface. The interface allows users to input meetingrequests and schedule preferences, to check the scheduling of a meeting as negotiated by7



Working

Memory

Message
Constructor/Decoder

Calendar manipulator

User Interface

User preferences

Negotiation
Module

Figure 2: The architecture of the automated meeting scheduler.the agent, and to monitor its calendar and current negotiations. The user preferencescomponent stores the preferences of the user for the nature of schedules, priorities for di�erenttypes of meetings, preferences for attending meetings with other users, etc. The workingmemory contains the data structures and memory traces of negotiations on meetings thatare being currently scheduled. The negotiation module is the \brain" of the meetingschedule system, and uses the user preferences while exchanging proposals with meetingscheduling agents representing other users to schedule meetings in the working memory. Thecalendar manipulator component allows the user interface and the negotiation moduleto access and modify the status of the user's schedule through the calendar managementprogram. The message constructor/decoder component serves as the interface withthe e-mail system through which messages are communicated with other scheduling agents.When a proposal is to be sent, this module constructs an appropriate mail message in thedesignated format and invokes the mailer. Similarly, when a proposal or a bid arrives fromanother agent, this module decodes the message and posts the proposal or bid into theworking memory.To develop a system that is portable across a number of platforms, we are using theindustry-standard X Window system to develop a Graphical User Interface (GUI) throughwhich users would interact with their meeting scheduling agent (we are using the X Toolkitconsisting of Open Software Foundation's Motif widget set and the Xt Intrinsics). Theinterface provides the user with a convenient tool to construct a meeting request. Thisinclude a list of other users from whom to choose meeting attendees (by clicking on boxes,8



or writing out names). It is also used to notify the user when a mutually acceptable timefor a new meeting has been found. The user can choose to reserve the option of a �nal checkbefore any meeting is scheduled, or may choose to allow his/her agents to schedule meetingswithout any intervention. We are currently working on extending the interface so that itsview can be easily customized.The interface is also used to input preferences (prefer to have Friday afternoons empty,prefer meetings in the second half of a day, etc.) and priorities (meetings with the bosshave higher priority compared to meetings with subordinates, etc.). The user preferencesmodule codi�es the preferences and priorities of the user which are used as soft constraintsto guide the negotiation process. We intend to develop a language by which users canspecify their preferences for di�erent types of meetings (depending on the goals of meetings),preference for meetings with other users (a particular user may be more inclined to attendmeetings convened by certain users compared to others), preferences for peak density oncalendar (a user may choose to attend a seminar if he/she does not have any other lengthycommitment that day). Only some of the functionalities of this module have already beenimplemented. These include specifying preferences for meeting with di�erent users andpreferences for di�erent meeting lengths. For each of the other users in the system, a usercan specify his/her preference either by typing in a real number between 0 and 1, or byclicking on a color bar that represents the same continuum. Preferences for meeting lengthsare similarly speci�ed. We are currently working on the part of the interface that allowsusers to specify preferences for meeting in di�erent parts of the week. The basic mechanismis to �rst select a color from the color bar to represent a preference level, and then click anddrag over a part of the calendar to label it with the chosen preference level.The negotiation module implements our theoretical �ndings (corroborated by exper-imental simulations), and selects the appropriate calendar access/modi�cation and commu-nication actions necessary to schedule the meetings in the working memory following thepreferences of the user. Though this module is the most well-grounded in basic research, weare continuously updating it to accommodate negotiation on meetings with new constraintsthat we have not studied in our previous research and also to utilize additional forms of userpreferences. The working memory component simply contains a trace of all communica-tions over meetings that are being currently negotiated. Our implementation is completelyobject oriented with meetings, proposals, and even users treated as objects. Thus methodsare de�ned to create new meetings in working memory, to add proposals to meetings, andto remove from working memory a meeting that has been scheduled. Objects correspondingto meetings that are scheduled are written out to a history �le which can be later consultedfor rescheduling or learning models of the scheduling activities of other users. The arrival ofmeeting request from the user or a bid or a proposal from another scheduling agent triggersthe negotiation module to take appropriate actions. The negotiation module uses the calen-dar manipulationmodule to access/update the current status of the user calendar. It usessystem calls to both read and update the status of the user calendar as maintained by thecalendar management software. We intend to add to the functionality of this module thatwill allow users to directly merge schedule changes (which may arise if the user personallyscheduled a meeting while away from the computing facilities, e.g., while on a business trip)with the current calendar.The message constructor/decoder is the workhorse in the system which handles the9



Figure 3: E-mail message containing a proposal for a meeting.communication between meeting schedulers. Communication between scheduling agents usesthe electronic mail system. On being invoked by the negotiation module to send a message,this module constructs a message with a specially formatted subject and body and then callsthe mailing software to send out e-mails to the recipient agents. This module also continuallypolls the system mailbox to check if a meeting scheduling message has arrived (identi�ed bya special header). When it �nds such a message, it translates the e-mail message into anappropriate internal format and posts it on the working memory.Figure 3 shows a snapshot of a mail message announcing a new meeting. The informationcontained in the header string denotes that this is a meeting scheduling message for a meetingwith an ID of \mahend:26Sep94:13:46:02" (formed by appending the login id of the useroriginating the meeting request with the time at which the request was made). It alsospeci�es that this is a message from the host to an invitee, is a proposal, and is a part of the�rst round of negotiation on the meeting. The body of the message contains the meetingID, the user originating the meeting, meeting topic, invitees to the meeting, preferred timeintervals being proposed for the meeting (any one of which may be chosen), the response(which would be �lled in by the invitee agents when responding to this proposal), expectedduration of the meeting, a suggested priority of the meeting (inviteesmay assign very di�erentpriorities to the same meeting), deadline by which a decision on this meeting has to be made,and the set of acceptable time intervals for this meeting (in this case, the meeting can beheld either anytime on the 5th of October, or in the morning of the 6th of October). Theexact format of the message is evolving as we enhance the capabilities of the other modulesof the meeting scheduling system. 10



Continuing WorkSome of the other extensions that we are actively pursuing include extending the protocol toschedule meetings by choosing representatives from groups (a meeting with a representativefrom each of the marketing, purchasing, and research division), developing a grammar tospecify complex relationships between meetings, creating an explanation facility to justifyscheduling decisions to the user, assigning meeting priorities based on pooled and normal-ized features (which include keywords in meeting descriptors, participants, meeting length,current schedule load, etc.), and learning user preferences by observing users choose fromalternative solutions.The present implementation is being used by a small group of researchers in our depart-ment, and we are using the feedback to improve the interface and expand the functionalityof the system. Results have been encouraging so far, but we are also aware that the levelof expertise of these group of researchers is very di�erent from the average user of such asystem. After we have added in some of the functionalities mentioned above, allowing amore structured and easier interaction with the system, we plan to include less sophisticatedusers to test the system.On simulation runs, we have been able to scale the system to a large number of users(> 50) without any deterioration in system performance. The implemented system, however,needs more testing before we can use it in such large work groups. The techniques developedso far will work well for meetings with upto approximately 10 users. For scheduling meetingswith larger number of attendees, it is unlikely that a common free time can be readilyfound. The cancellation schemes that we have developed [1] needs to be augmented withmecahnisms to utilize user preferences to handle these meetings with a very large numberof attendees. Our system can handle any number of meetings or any meeting densities onthe user calendars. The success rate of scheduling meetings without canceling previouslyscheduled meetings, however, decreases with increased densities on the calendars and whenlong meetings are being scheduled more frequently. Some of the meeting constraints likescheduling a meeting only if another meeting is scheduled can be easily handled. Otherconstraints like scheduling a meeting with less number of attendees than speci�ed and/or fora shorter length if necessary, are more di�cult to process because of the number of di�erentways such constraints can be met.We have done extensive testing in simulation of the performance of our distributed meet-ing scheduling system with di�erent strategy choices [1]. The number of rounds of negotiationrequired to schedule a meeting, the percentage of meeting requests that can be accommo-dated without canceling previously scheduled meetings, and the distribution of meetingdensity over the calendar varies widely with di�erent strategy choices, and with di�erentnumber of users, meeting request frequency, etc. We have developed a probabilistic schemeby which agents can automatically choose the scheduling options expected to minimize thenumber of rounds of negotiation [2]. To schedule typical meetings with 3 to 5 attendees for2 to 3 hours, our agents take 2 to 3 rounds of negotiation when calendars are 70 to 80% full.Our work is based on a good understanding and characterization of the approaches neededby automated schedulers to adapt to changing environmental conditions. The applicabilityof the system will depend largely on how exible the system is to the demands, constraints,and preferences of the associated user. The basic implementation being in place, we are11



now concentrating our e�orts on developing structured knowledge representation and rea-soning mechanism that allows users to easily specify requirements, and allows the automatednegotiator to e�ciently use those requirements while scheduling meetings.AcknowledgmentsThis research has been sponsored, in part, by the National Science Foundation under Coor-dination Theory and Collaboration Technology grant IRI-9015423 and a Research InitiationAward IRI-9410180, and by a grant from Bellcore. I would like to thank Edmund Durfee forhis invaluable suggestions and guidance during much of this work.References[1] Sandip Sen. Predicting Tradeo�s in Contract-Based Distributed Scheduling. PhD thesis,University of Michigan, December 1993.[2] Sandip Sen and Edmund H. Durfee. On the design of an adaptive meeting scheduler.In Proc. of the Tenth IEEE Conference on AI Applications, pages 40{46, March 1994.[3] Sandip Sen and Edmund H. Durfee. The role of commitment in cooperative negotiation.International Journal of Intelligent and Cooperative Information Systems, 3(1):67{81,1994.[4] Thomas W. Malone, Kenneth R. Grant, Franklyn A. Turbak, Stephen A. Brobst, andMichael D. Cohen. Intelligent information-sharing systems. Communications of theACM, 30(5):390{402, 1987.[5] Communications of the ACM, july 1994, volume 37, number 7, 1994. Special Issue onIntelligent Agents.[6] Phil Clark. O�ce automation: Automation gains municipal ground. American City &County, page 10, January 1987.[7] J. F. Kelley and A. Chapanis. How professional persons keep their calendars: Implica-tions for computerization. Journal of Occupational Psychology, 55:141{156, 1982.[8] Irene Greif. PCAL: A personal calendar. Technical Report TM-213, MIT Laboratoryfor Computer Science, Cambridge, Mass, 1982.[9] Jonathan Grudin. Social evaluation of the user interface: Who does the work and whogets the bene�t? In H. Bullinger and B. Shacketl, editors, Human Computer Interaction{ INTERACT87, pages 805{811. North Holland, 1987.[10] Eric Taub. Sharing schedules. MacUser, pages 155{162, July 1993.[11] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David Zabowski. Apersonal learning apprentice. In Proceedings of the Tenth National Conference on Arti-�cial Intelligence, pages 96{103, July 1992.12



[12] Pattie Maes. Agents that reduce work and information overload. Communications ofthe ACM, 37(7):30{40, July 1994.[13] Reid G. Smith. The contract net protocol: High-level communication and control ina distributed problem solver. IEEE Transactions on Computers, C-29(12):1104{1113,December 1980.

13


