An automated distributed meeting scheduler

Sandip Sen
Department of Mathematical & Computer Sciences
University of Tulsa,

600 South College Avenue,
Tulsa, OK 74133

e-mail: sandip@kolkata.mcs.utulsa.edu

Introduction

A central thesis in our research has been the claim that a number of routine information
processing needs in organizations can be efficiently automated. As such, we are interested
in designing and implementing software systems that automate and share information pro-
cessing tasks of associated human users. The benefit of such software is two-fold: they allow
users to concentrate on more productive tasks, and they improve the quality of information
processing by preventing errors that might be introduced by human users due to the routine
and tedious nature of the job in question.

In particular, we have studied the problem of efficiently automating the process of schedul-
ing meetings between employees in an organization. Our approach to meeting scheduling,
in contrast to most of the currently available software for centralized calendar management
and meeting scheduling, is a distributed one, where each employee in the organization is
provided with an automated (computational) meeting scheduling agent. When a user wants
to schedule a meeting with other users, he/she inputs a meeting request to the associated
meeting scheduling agent. This agent negotiates with the agents corresponding to the other
users to schedule the meeting. Since all meeting requests and calendar accesses are routed
through the meeting scheduling agent, it can protect the privacy of its associated user while
following other preferences of this individual. The meeting scheduling agent uses the cal-
endar manager software to manipulate the user’s calendar, and uses the e-mail system to
communicate messages with other meeting scheduling agents (see Figure 1).

The central question in the design of a successtful meeting scheduler is the following: how
can a meeting scheduling agent efficiently negotiate with other meeting scheduling agents
without compromising any of the constraints specified by its associated user. In our previous
work [1, 2, 3] we have studied the usefulness of different heuristic negotiation strategies to
solve a precisely defined distributed meeting scheduling (DMS) problem. We developed
analytical models of expected performance of heuristic strategy combinations, and verified
these expectations with experiments on simulated systems.

User B

User A

@ User C

M eeting
Schedul er

Calendar E il
M anager AL

M eeting Scheduling System

User D

Figure 1: Distributed meeting scheduling over a network of computers.

Intelligent information agents in organizations

Computer networks that support human organizations provide an infrastructure for im-
proving group performance through an array of collaboration tools, such as electronic mail
systems and shared file systems. While such tools help people share, access, and manipu-
late more information, they can also impair human performance through overuse or abuse
from the propagation of unnecessary information. Techniques from artificial intelligence can
introduce “intelligent agents” into organizational computing systems, where these agents
use knowledge about the interests and priorities of people to perform routine organizational
tasks such as automatically screening, directing, and even responding to information [4].
The usefulness of intelligent agents is further appreciated with the advent of the information
superhighway [5].

Some of the people in a typical organization spend a large percentage of their working time
in scheduling and attending meetings [6, 7]. The efficiency of the scheduling process used and
the quality of the schedules generated, then, affects the working of an organization to a large
extent. Even when everyone involved in a meeting has available times to meet, the process
of searching for a commonly available time in the presence of communication delays (either
through electronic mail or in contacting by phone), and in the presence of other meetings
being scheduled concurrently, can be frustrating and lead to less than satisfactory solutions.
Automating meeting scheduling is important, therefore, not only because it can save time
and effort on the part of humans, but also because this may lead to more efficient schedules
and to changes in how information is exchanged within organizations. Past efforts [8, 4] in
developing automated meeting schedulers have met with limited success, although they are
available in a number of office software systems [9].

Humans exhibit wide variations in how they manage their calendars. The variations
range over the length of the calendars used by individuals, the number of calendars used by
each person, level of privacy desired, portability and accessibility requirements, percentage

of scheduled meetings that are canceled and rescheduled, as well as the nature of archiving,
querying, and inserting related information into the calendar. In order for an automated
calendar management system to be accepted, it has to be flexible to the varying needs of
the user. Such a requirement bodes well for our distributed formulation of the problem, as
each user can modify his/her associated agent according to his/her own liking.

Most of the commercially available software for scheduling over computer networks have
been personal computer based systems. A good survey of the most promising of these
products can be found in [10]. This survey evaluates and compares the features offered by
the four most powerful schedule sharing systems in practice today. These four products are:
ON Technology’s Meeting Maker 1.5, Microsoft’s Schedule+ 1.0, Now Software’s Now Up-
to-Date 2.0, and WordPerfect Office 3.0’s Calendar module. The most important thing to
clarify here from our point of view is that none of these systems are “automatic schedulers”.
These products provide the users with only a nice interface to view their own calendars
and that of other users, and in some cases find time intervals to propose by searching these
calendars. When using these systems, users have to allow complete access to their calendars
by all other users. The only restriction is that the user (or a proxy) has the sole authority to
modify his/her associated calendar. As the title of the paper itself suggests, these products
are designed to “share” schedules. Similarly, in the AT community, there has been a number
of recent projects [11, 12] which assist a human user in scheduling meetings. None of these,
however, completely automate the meeting scheduling process.

We, however, propose to provide autonomous scheduling capabilities through restricted
information exchange between intelligent meeting scheduling agents. Our approach is consid-
erably more difficult because of the significantly limited information available to scheduling
agents about the state of the calendar of other users. As such, multiple rounds of information
exchange between scheduling agents are often required to locate a time interval in which a re-
quested meeting can be scheduled. The latter mode of meeting scheduling, however, does not
require the intervention of the human user for each round of proposal exchange, and is likely
to be significantly quicker in scheduling meetings. In addition, our proposal for autonomous
scheduling can approximate the privacy and security concerns of users as specified by user-
modifiable constraints (these concerns are severely compromised in the above-mentioned
systems as others can freely access the user’s calendar state). The distributed nature of our
system allows for better throughput through concurrent negotiation on multiple meetings,
and better fault tolerance.

Distributed Meeting Scheduling

When a user requests a meeting to be scheduled with other users, the associated meeting
scheduling agent is designated as the host agent for that meeting; the agents corresponding
to the other users attending the meeting are called invitee agents. A meeting is specified by
a number of parameters:

o set of attendees,
e proposed length of the meeting,

e priority assigned to the meeting,

e a set of possible starting times on the calendar for the meeting (e.g., sometime next
week, Friday afternoon, etc.),

o a scheduling deadline,
e any additional constraints.

Space does not permit an enumeration of the constraints our system can handle. Some of the
typical constraints that can be handled include scheduling a meeting before/after another
meeting, scheduling a meeting only if another meeting is scheduled, scheduling with a subset
of attendees or for a shorter length if a meeting time satisfying all the given parameters
cannot be found, scheduling repeating events, etc.

Our scheduling agents use contract-based negotiation [13] to find mutually acceptable
time slots for meetings. While the contracting framework does not capture some of the
sophistication that people might employ in exceptional circumstances, it balances the need
to have a flexible routine to handle a range of situations, while still keeping the routine
well-defined and understandable enough to be embraced by a user.

We will use an example to illustrate the workings of our proposed scheduler. Let us
consider a simple meeting scheduling scenario in which user A wants to meet with users B
and C for an hour sometime in the next week. When user A instructs its meeting scheduling
agent (in the following we name the agents after their user) to schedule this meeting, agent
A will search the local calendar to find some hour-long free slots next week that does not
conflict with user A’s preferences (for example, no meeting before 9 or just after lunch hours).
Some of these free slots are then proposed via electronic mail to agents corresponding to
users B and C for a meeting (for example, agent A may propose to meet either at 10am on
Monday or at 2pm on Wednesday). If agents B and C find some of these proposals agreeable
(corresponding slots are free in the calendar of their respective users, and does not violate
any constraints/preferences), they respond positively by electronic mail. Alternatively, they
may propose some other hours as dictated by local calendars and user preferences. These
negotiation cycle is repeated until a slot is found which is agreeable to all three agents, and
the meeting is scheduled for that time slot.

A simplified version of the scheduling protocol is given below:

1. When a meeting needs to be scheduled, the host tries to find time intervals in its
schedule that suit the constraints of date and time. If it cannot find any interval, it fails
and the meeting is abandoned. Otherwise, if it is the only participant in the meeting,
it schedules the meeting for the best (earliest) interval. If there are other participants,
the host announces a contract for the meeting to the invitees by proposing one or more
of the best intervals found.

2. Each invitee receives the contract proposal(s), and tries to find local solutions to satisfy
those contracts and send them back as bids to the host. Bids consist of time interval(s)
for which the bidder (the invitee) can schedule the announced meeting. The time
interval(s) sent as bids can simply be the subset of those announced by the host that
the invitee has free on its calendar, or they can be counter-proposals for when to meet.

3. The host collects and evaluates these bids. If the bids suggest a common time interval
which is free for the host as well, the meeting can be scheduled and the host sends
awards to the bidders. If the meeting cannot be mutually scheduled yet, the host
generates new proposals depending on the bids received and its own calendar and
sends these off to the bidders. It also sends rejections for bids received.

4. When the bidders receive new proposals, they reply as above. On receiving an award,
they check to see if those time intervals are still free. If so, they mark their calendar,
recording the scheduling of the meeting. Otherwise they send back rejections.

The above algorithmic steps are repeated until a satisfactory schedule is arrived at or it is
recognized that the meeting cannot be scheduled (due to an over-constrained schedule or
due to the fact that the meeting could not be scheduled before its deadline).

Heuristic negotiation strategies

Though the contract net metaphor delineates the respective roles of the agents involved in a
coordination process, it does not specify the local control necessary to focus the negotiation
process. The most important questions that need to be answered before the contract-net
protocol can be applied in the DMS domain are the following:

e How do hosts build contracts to propose?
e How do invitees bid in response to contracts?
e How do agents maintain constraints between concurrently negotiated meetings?

e How do agents handle the change in problem constraints as time passes during nego-
tiation?

The meeting scheduling problem has been proved to be computationally intractable, and
hence any realistic attempt to solve the problem has to use appropriate heuristics to find
satisfactory solutions. We view the DMS problem as a distributed search problem, where
each of the agents involved in a meeting searches its calendar to find a time interval for the
meeting, and it is required that every attendee chooses the same time interval to schedule the
meeting. To find a common free time interval of the desired length quickly, the agents must
use efficient local search biases to guide the search process in finding suitable time intervals
on the calendar to use for the meeting; decide on how much information to exchange without
losing flexibility to schedule other meetings concurrently; find responses to proposals that
move the search towards a solution without violating local constraints; choose whether or
not to view tentative proposals as commitments; and locate already scheduled meetings
to reschedule when faced with new contingencies. In the following, we briefly narrate our
findings on these heuristics:

Search bias: Heuristics for search biases allow agents to focus search in their calendar
to find preferred free intervals to schedule a meeting. A search bias provides a partial order
on a given a set of alternative solutions. In the DMS domain, we have experimented with
three different search biases: linear early, linear least dense, and hierarchical. Linear search

biases (search biases that operate on a linear ordering of the search space) are more effective
for a small number of agents working on short calendars; a hierarchical search bias using
temporal abstractions of the calendar (involving months, weeks, days, hours) is more useful
for larger organizations. When using linear early search bias, agents propose the earliest
available time slot for a requested meeting. When using linear least dense bias, agents
search the entire calendar and then propose a time interval with maximum free time around
it. When using hierarchical search bias, agents scheduling a meeting first identify which is
the most desirable week to schedule the meeting, followed by the most desirable day within
the chosen week, and finally the particular time interval within that day. Whereas the
linear early search bias produces front-loaded calendar leaving room for long meetings later
on, it cannot accommodate the scheduling of meetings at short notice (and hence triggers
meeting cancellations). Linear least dense and hierarchical search biases produce evenly
loaded calendars that can more readily accommodate schedule disruptions, but can fail to
schedule long meetings when the calendar is dense. These heuristics help agents in deciding
what to propose to other agents and also to adjust their proposals as calendar states change
(causing changes in problem constraints) over time.

Information exchanged: As in most problems involving distributed search, there is
a tradeoff between the amount of information exchanged per iteration among the meeting
schedulers and the number of iterations of information exchange needed to schedule a meet-
ing. If everybody sent all information to one agent, then one iteration is sufficient, and we
have a centralized scheduling scenario. To take full advantage of this situation, however,
it is necessary to sequentialize the scheduling of all meetings, which severely affects system
throughput. Limited, focused exchange of information to schedule meetings will in general
require more iterations, but will allow the agents to schedule multiple meetings concurrently,
thus increasing the throughput of the system. The latter form of communication will in gen-
eral require less information exchange, as all the information sent by the agents in the first
case may not be necessary to process a task. Furthermore, in the DMS domain, schedulers
have to balance the need for efficiency (implies sending more meeting proposals per itera-
tion) with the need for maintaining privacy (propose as few intervals as possible to schedule
a meeting). Our probabilistic analysis shows that, although agents can schedule meetings
quickly by sending more proposals per iteration of negotiation, the law of diminishing returns
holds back the savings obtained by exchanging more information [2]. These heuristics help
agents decide how much to share with other agents.

Response mechanisms: In scheduling a meeting, the invitee agent can be passive,
requiring the host to do most of the work in finding a suitable contract, or be more active
in guiding the negotiation through informative counter-proposals. For example, the invitee
can respond by accepting or rejecting the proposal, or can counter-propose another time
interval for the meeting. Cooperative revelation of local information can greatly accelerate
coordination if coupled with proper local search control. We have developed analytical
expectations of the savings obtained in information exchange iterations when invitee agents
respond with counterproposals instead of just accepting/rejecting proposals from host agents.
These heuristics address the question of how to construct bids in response to proposals.

Use of commitment: From the time an agent proposes a time interval for a meeting
to the time it receives a response from the other side, other meeting requests may arrive
that can use this interval. The agent has to decide whether or not to use the same (or

overlapping) time intervals for simultaneous negotiations on different meetings. We have
investigated how agents can reason about system load, expected coordination effort, impor-
tance of meetings being processed, etc., to make a knowledgeable decision on committing to
tentative proposals [3]. These heuristics enable agents to avoid harmful interactions between
concurrently negotiated meetings.

Cancellation mechanisms: When faced with changing demands on its resources, an
agent may need to cancel previously scheduled meetings to accommodate new ones. A
structured framework for renegging past agreements has been developed that optimizes the
utility of canceling previously scheduled meetings to accommodate new ones [1]. These
heuristics enable agents to rework the meeting schedules as calendar state changes with
time.

Adaptive scheduling: Intelligent, autonomous agents should be able to reason and
adapt to changing environmental conditions. We have developed the design of an adap-
tive scheduling agent that will be able to choose the most efficient local problem-solving
behavior, given the current environmental parameters and the local problem-solving states
of the agents involved in the negotiation process [2]. Local problem-solving behavior of the
meeting scheduling agents is determined by a combination of heuristic strategy options, each
option chosen from a set of alternatives available for the associated strategy dimension. Our
goal has been to design the adaptive agent such that its choices are based on precise an-
alytical expectations of the performance, as measured by some given performance metrics,
of local problem-solving behavior. Agents that monitor their environment continually and
adjust their behavior to suit changing demands imposed on the system can provide robust
performance across a wide range of situations.

Implementation

We have implemented a distributed meeting scheduling system on a workstation based com-
puting environment, that utilizes the above-mentioned findings. Though the current imple-
mentation runs on a local network of workstations, the negotiation mechanisms and encoding
language developed can be effectively used in other types of computing environments. For
example, the same techniques can be used to implement a distributed meeting scheduling
system that runs on personal computers. The actual implementation will definitely be dif-
ferent depending on the communication and programming environment involved. As far as
either the problem-solving behavior of the system or the manner in which the user interacts
with the system is concerned, however, no appreciable modifications to the proposed design
is required. Additionally, such a meeting scheduling system can be configured for implemen-
tation in a server-based computing environment as well (this type of environment is often
used in the shared schedule implementations mentioned above). The programming language
used for the current implementation is C++4.

The architecture of our meeting scheduling agents is as described in Figure 2. We first
briefly outline the functionalities of each of the components of the meeting scheduler, and
then describe their implementations in more detail. The user interacts with the meeting
scheduling system through the user interface. The interface allows users to input meeting
requests and schedule preferences, to check the scheduling of a meeting as negotiated by

[User preferenceﬁj
\l/ Working
Negotiation Memory
Module
- i T
. M essage
Calendar man pulatoﬁ t Constructor/Decoder J

A A
v Vv

Figure 2: The architecture of the automated meeting scheduler.

the agent, and to monitor its calendar and current negotiations. The user preferences
component stores the preferences of the user for the nature of schedules, priorities for different
types of meetings, preferences for attending meetings with other users, etc. The working
memory contains the data structures and memory traces of negotiations on meetings that
are being currently scheduled. The negotiation module is the “brain” of the meeting
schedule system, and uses the user preferences while exchanging proposals with meeting
scheduling agents representing other users to schedule meetings in the working memory. The
calendar manipulator component allows the user interface and the negotiation module
to access and modify the status of the user’s schedule through the calendar management
program. The message constructor/decoder component serves as the interface with
the e-mail system through which messages are communicated with other scheduling agents.
When a proposal is to be sent, this module constructs an appropriate mail message in the
designated format and invokes the mailer. Similarly, when a proposal or a bid arrives from
another agent, this module decodes the message and posts the proposal or bid into the
working memory.

To develop a system that is portable across a number of platforms, we are using the
industry-standard X Window system to develop a Graphical User Interface (GUI) through
which users would interact with their meeting scheduling agent (we are using the X Toolkit
consisting of Open Software Foundation’s Motif widget set and the Xt Intrinsics). The
interface provides the user with a convenient tool to construct a meeting request. This
include a list of other users from whom to choose meeting attendees (by clicking on boxes,

or writing out names). It is also used to notify the user when a mutually acceptable time
for a new meeting has been found. The user can choose to reserve the option of a final check
before any meeting is scheduled, or may choose to allow his/her agents to schedule meetings
without any intervention. We are currently working on extending the interface so that its
view can be easily customized.

The interface is also used to input preferences (prefer to have Friday afternoons empty,
prefer meetings in the second half of a day, etc.) and priorities (meetings with the boss
have higher priority compared to meetings with subordinates, etc.). The user preferences
module codifies the preferences and priorities of the user which are used as soft constraints
to guide the negotiation process. We intend to develop a language by which users can
specify their preferences for different types of meetings (depending on the goals of meetings),
preference for meetings with other users (a particular user may be more inclined to attend
meetings convened by certain users compared to others), preferences for peak density on
calendar (a user may choose to attend a seminar if he/she does not have any other lengthy
commitment that day). Only some of the functionalities of this module have already been
implemented. These include specifying preferences for meeting with different users and
preferences for different meeting lengths. For each of the other users in the system, a user
can specify his/her preference either by typing in a real number between 0 and 1, or by
clicking on a color bar that represents the same continuum. Preferences for meeting lengths
are similarly specified. We are currently working on the part of the interface that allows
users to specify preferences for meeting in different parts of the week. The basic mechanism
is to first select a color from the color bar to represent a preference level, and then click and
drag over a part of the calendar to label it with the chosen preference level.

The negotiation module implements our theoretical findings (corroborated by exper-
imental simulations), and selects the appropriate calendar access/modification and commu-
nication actions necessary to schedule the meetings in the working memory following the
preferences of the user. Though this module is the most well-grounded in basic research, we
are continuously updating it to accommodate negotiation on meetings with new constraints
that we have not studied in our previous research and also to utilize additional forms of user
preferences. The working memory component simply contains a trace of all communica-
tions over meetings that are being currently negotiated. Our implementation is completely
object oriented with meetings, proposals, and even users treated as objects. Thus methods
are defined to create new meetings in working memory, to add proposals to meetings, and
to remove from working memory a meeting that has been scheduled. Objects corresponding
to meetings that are scheduled are written out to a history file which can be later consulted
for rescheduling or learning models of the scheduling activities of other users. The arrival of
meeting request from the user or a bid or a proposal from another scheduling agent triggers
the negotiation module to take appropriate actions. The negotiation module uses the calen-
dar manipulation module to access/update the current status of the user calendar. It uses
system calls to both read and update the status of the user calendar as maintained by the
calendar management software. We intend to add to the functionality of this module that
will allow users to directly merge schedule changes (which may arise if the user personally
scheduled a meeting while away from the computing facilities, e.g., while on a business trip)
with the current calendar.

The message constructor/decoder is the workhorse in the system which handles the

r‘f—.l-ul Mail Tool ¥3: View Message 221

From mahenddaboltabol mcs. utulsa. edu Mon Sep 26 15:43:14 1994 :'
5ate: Mor, 26 Sep 94 13:46: 31 =0700
|

From: mahend@aboltabol mecs. utulsa.edu (Mahendra Sekaran
To: sandip@kolkata. mes. utulsa.edu, haledeuler.mes.utulsa. edu

Subject: *MS*mahend: 265ep94:13:46:02-HI-P-1
Content-Type: text

Content-Length: 365

Meeting—ID ¢ mahend: 265Sep9d: 1346072
Host ¢ Mahendra Sekaran

Topic ¢ Discuss issues on Scheduler
Invitees ¢ Sandip Sen, John Hale
Froposal D10/ 941400, 10694900
Response voMA

Duration 1030

Friority N

Deadl ine R F30/94-17 00

acceptable times 1075794, 10/6/94 [E:00-12:00]

Figure 3: E-mail message containing a proposal for a meeting.

communication between meeting schedulers. Communication between scheduling agents uses
the electronic mail system. On being invoked by the negotiation module to send a message,
this module constructs a message with a specially formatted subject and body and then calls
the mailing software to send out e-mails to the recipient agents. This module also continually
polls the system mailbox to check if a meeting scheduling message has arrived (identified by
a special header). When it finds such a message, it translates the e-mail message into an
appropriate internal format and posts it on the working memory.

Figure 3 shows a snapshot of a mail message announcing a new meeting. The information
contained in the header string denotes that this is a meeting scheduling message for a meeting
with an ID of “mahend:265ep94:13:46:02” (formed by appending the login id of the user
originating the meeting request with the time at which the request was made). It also
specifies that this is a message from the host to an invitee, is a proposal, and is a part of the
first round of negotiation on the meeting. The body of the message contains the meeting
ID, the user originating the meeting, meeting topic, invitees to the meeting, preferred time
intervals being proposed for the meeting (any one of which may be chosen), the response
(which would be filled in by the invitee agents when responding to this proposal), expected
duration of the meeting, a suggested priority of the meeting (invitees may assign very different
priorities to the same meeting), deadline by which a decision on this meeting has to be made,
and the set of acceptable time intervals for this meeting (in this case, the meeting can be
held either anytime on the 5th of October, or in the morning of the 6th of October). The
exact format of the message is evolving as we enhance the capabilities of the other modules
of the meeting scheduling system.

10

Continuing Work

Some of the other extensions that we are actively pursuing include extending the protocol to
schedule meetings by choosing representatives from groups (a meeting with a representative
from each of the marketing, purchasing, and research division), developing a grammar to
specify complex relationships between meetings, creating an explanation facility to justify
scheduling decisions to the user, assigning meeting priorities based on pooled and normal-
ized features (which include keywords in meeting descriptors, participants, meeting length,
current schedule load, etc.), and learning user preferences by observing users choose from
alternative solutions.

The present implementation is being used by a small group of researchers in our depart-
ment, and we are using the feedback to improve the interface and expand the functionality
of the system. Results have been encouraging so far, but we are also aware that the level
of expertise of these group of researchers is very different from the average user of such a
system. After we have added in some of the functionalities mentioned above, allowing a
more structured and easier interaction with the system, we plan to include less sophisticated
users to test the system.

On simulation runs, we have been able to scale the system to a large number of users
(> 50) without any deterioration in system performance. The implemented system, however,
needs more testing before we can use it in such large work groups. The techniques developed
so far will work well for meetings with upto approximately 10 users. For scheduling meetings
with larger number of attendees, it is unlikely that a common free time can be readily
found. The cancellation schemes that we have developed [1] needs to be augmented with
mecahnisms to utilize user preferences to handle these meetings with a very large number
of attendees. Our system can handle any number of meetings or any meeting densities on
the user calendars. The success rate of scheduling meetings without canceling previously
scheduled meetings, however, decreases with increased densities on the calendars and when
long meetings are being scheduled more frequently. Some of the meeting constraints like
scheduling a meeting only if another meeting is scheduled can be easily handled. Other
constraints like scheduling a meeting with less number of attendees than specified and/or for
a shorter length if necessary, are more difficult to process because of the number of different
ways such constraints can be met.

We have done extensive testing in simulation of the performance of our distributed meet-
ing scheduling system with different strategy choices [1]. The number of rounds of negotiation
required to schedule a meeting, the percentage of meeting requests that can be accommo-
dated without canceling previously scheduled meetings, and the distribution of meeting
density over the calendar varies widely with different strategy choices, and with different
number of users, meeting request frequency, etc. We have developed a probabilistic scheme
by which agents can automatically choose the scheduling options expected to minimize the
number of rounds of negotiation [2]. To schedule typical meetings with 3 to 5 attendees for
2 to 3 hours, our agents take 2 to 3 rounds of negotiation when calendars are 70 to 80% full.

Our work is based on a good understanding and characterization of the approaches needed
by automated schedulers to adapt to changing environmental conditions. The applicability
of the system will depend largely on how flexible the system is to the demands, constraints,
and preferences of the associated user. The basic implementation being in place, we are

11

now concentrating our efforts on developing structured knowledge representation and rea-

soning mechanism that allows users to easily specify requirements, and allows the automated

negotiator to efficiently use those requirements while scheduling meetings.

Acknowledgments

This research has been sponsored, in part, by the National Science Foundation under Coor-
dination Theory and Collaboration Technology grant IRI-9015423 and a Research Initiation
Award TRI-9410180, and by a grant from Bellcore. I would like to thank Edmund Durfee for

his invaluable suggestions and guidance during much of this work.

References

[1] Sandip Sen. Predicting Tradeoffs in Contract-Based Distributed Scheduling. PhD thesis,
University of Michigan, December 1993.

[2] Sandip Sen and Edmund H. Durfee. On the design of an adaptive meeting scheduler.
In Proc. of the Tenth IEEFE Conference on Al Applications, pages 40—46, March 1994.

[3] Sandip Sen and Edmund H. Durfee. The role of commitment in cooperative negotiation.
International Journal of Intelligent and Cooperative Information Systems, 3(1):67-81,
1994.

[4] Thomas W. Malone, Kenneth R. Grant, Franklyn A. Turbak, Stephen A. Brobst, and
Michael D. Cohen. Intelligent information-sharing systems. Communications of the
ACM, 30(5):390-402, 1987.

[5] Communications of the ACM, july 1994, volume 37, number 7, 1994. Special Issue on
Intelligent Agents.

[6] Phil Clark. Office automation: Automation gains municipal ground. American City &
County, page 10, January 1987.

[7] J. F. Kelley and A. Chapanis. How professional persons keep their calendars: Implica-
tions for computerization. Journal of Occupational Psychology, 55:141-156, 1982.

[8] Trene Greif. PCAL: A personal calendar. Technical Report TM-213, MIT Laboratory
for Computer Science, Cambridge, Mass, 1982.

[9] Jonathan Grudin. Social evaluation of the user interface: Who does the work and who
gets the benefit? In H. Bullinger and B. Shacketl, editors, Human Computer Interaction
— INTERACTS7, pages 805-811. North Holland, 1987.

[10] Eric Taub. Sharing schedules. MacUser, pages 155-162, July 1993.
[11] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David Zabowski. A

personal learning apprentice. In Proceedings of the Tenth National Conference on Arti-

ficial Intelligence, pages 96-103, July 1992.

12

[12] Pattie Maes. Agents that reduce work and information overload. Communications of

the ACM, 37(7):30-40, July 1994.

[13] Reid G. Smith. The contract net protocol: High-level communication and control in
a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104-1113,
December 1980.

13

