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Abstract. Social norms serve as an important mechanism to reg-
ulate the behaviours of agents and to facilitate coordination among
them in multiagent systems. One important research question is how
a norm can rapidly emerge through repeated local interaction within
agent societies under different environments when their coordination
space becomes large. To address this problem, we propose a hier-
archically heuristic learning strategy (HHLS) under the hierarchical
social learning framework. Subordinate agents report their informa-
tion to their supervisors, while supervisors can generate instructions
(rules and suggestions) based on the information collected from their
subordinates. Subordinate agents heuristically update their strategies
based on both their own experience and the instructions from their
supervisors. Extensive experiment evaluations show that HHLS can
support the emergence of desirable social norms more efficiently and
can be applicable in a much wider range of multiagent interaction
scenarios compared with previous work. The influence of key related
factors (e.g., different topologies, population, neighbourhood and ac-
tion space size, cluster size) are also investigated and new insights are
obtained as well.

1 INTRODUCTION

In multiagent systems, social norms play an important role in reg-
ulating agents’ behaviors to ensure coordination among agents and
functioning of agent societies. One commonly adopted characteriza-
tion of a norm is to model it as a consistent equilibrium that all agents
follow during interactions where multiple equivalent equilibria coex-
ist [20]. How social norms can emerge efficiently in agent societies is
a key research problem in the area of normative multiagent systems.

There exist two major approaches for addressing norm emergence
problem: the top-down approach and the bottom-up approach. The
former approach investigates how to efficiently synthesize a norm
for all agents beforehand, while the latter one focuses on investi-
gating how a norm can emerge through repeated local interactions
by learning among agents. In distributed multiagent interaction en-
vironments, it is usually difficult to come up with any norm before
agents interactions start since there may not exist such a centralized
controller and also the optimal norm may vary frequently as the envi-
ronment dynamically changes and therefore, the bottom-up approach
via local learning promises to be more suitable for such kinds of dis-
tributed and dynamic environments.
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Until now, significant efforts have been devoted to investigat-
ing norm emergence problem from the bottom-up research direc-
tion [2, 3, 5–9, 12–17, 21–25]. Sen and Airiau [13] investigated the
norm emergence problem in a population of agents within ran-
domly connected networks where each agent is equipped with cer-
tain existing multiagent learning algorithms. The local interaction
among each pair of agents is modeled as two-player normal-form
games, and a norm corresponds to one consistent Nash equilibrium
of the coordination/anti-coordination game. Later a number of pa-
pers [2, 9, 12, 17] subsequently extended this work by using more
realistic and complex networks (e.g., small-world network and scale-
free network) to model the diverse interaction patterns among agents.
Additionally, different learning strategies and mechanisms have been
proposed to better facilitate norm emergence among agents within
different interaction environments [3, 6, 8, 11, 25].

Most of the previous works only focus on games with relatively
small size, which do not accurately reflect the practical interaction
scenarios where the action space of agents can be quite large. With
the increasing of the action space, unfortunately, most of the existing
approaches usually result in very slow norm emergence or even fail
to converge. Recently Yu et al. [21] proposed a hierarchical learn-
ing strategy to improve the norm emergence rate for the huge action
space problem. However, this work only considers the case in which
a norm corresponds to a Nash equilibrium where all agents select
the same action. This usually can be modelled as a two-player n-
action coordination game. One simple example with n=2 is shown
in Table 1. In contrast, in realistic interaction scenarios, a norm may
correspond to agents coordinating using different actions. One no-
table example is considering two drivers arriving at a road intersec-
tion from two neighbouring roads. To avoid collision, one possible
norm is ”yield to the left”, i.e., waiting for the car on the left-hand
side to go through the intersection first. This kind of scenario can
naturally be modelled as an anti-coordination game shown in Table
2, which exist two different norms (a, b) and (b, a).

Furthermore, agents may be faced with the challenge of high mis-
coordination cost and stochasticity of the environment. One repre-
sentative example is shown in Table 3, which we call it fully stochas-
tic coordination game with high penalty. In this game, there exist two
optimal Nash equilibriums each of which corresponds to one norm,
and one suboptimal Nash equilibrium. Two major challenges coex-
ist in this game: agents are vulnerable to converge to the suboptimal
Nash equilibrium due to the high penalty when agents mis-coordinate
on the outcomes; agents need to effectively distinguish between the
stochasticity of the environment and the explorations of other learn-
ers. It is not clear, a priori, how a population of agents can efficiently
evolve towards a consistent norm given the large space of possible
norms in such challenging environments.
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Table 1. An example of coordination
game

Agent 2’s actions

a b

Agent 1’s
actions

a 1 -1

b -1 1

Table 2. An example of
anti-coordination game

Agent 2’s actions

a b

Agent 1’s
actions

a -1 1

b 1 -1

Table 3. Fully stochastic coordination game with high penalty

1’s payoff
2’s payoff

Agent 2’s actions

a b c

Agent 1’s
actions

a 8/12 -5/5 -20/-40

b -5/5 0/14 -5/5

c -20/-40 -5/5 8/12

To answer this question, in this paper we propose a novel
hierarchical heuristic learning strategy (HHLS) under the hierarchi-
cal social learning framework to facilitate the rapid norm emergence
in agent societies. In the hierarchical social learning framework, the
agent society is separated into a number of clusters of subordinate
agents, where each cluster’s strategies are monitored and guided by
one supervisor agent. For each supervisor agent, in each round, it
collects the interaction information of the subordinate agents under
its supervision and generates guided instructions in the forms of rules
and suggestions for its subordinates. On the other hand, for each sub-
ordinate agent, apart from learning from its local interaction, it also
adjusts its strategy based on the instructions from its supervisor. The
main feature of the proposed framework is that through hierarchi-
cally supervised subordinate agents, an effective compromise solu-
tion can be generated to effectively balance distributed interactions
and centralized control towards efficient and robust norm emergence.
We evaluate the performance of HHLS under a wide range of games
and experimental results show that HHLS can efficiently facilitate
the rapid emergence of norms compared with the state-of-the-art ap-
proaches. We also investigate the influence of a number of key factors
on norm emergence: the population size, the neighbourhood size, the
size of action space, cluster size, different network topologies, etc.

The remainder of the paper is organized as follows. Section 2
discusses related work. Section 3 introduces the hierarchical social
learning framework and the heuristic learning strategy. Section 4
presents experimental evaluation results comparing with two repre-
sentative state-of-the-art approaches. Finally Section 5 concludes the
paper and points out future directions.

2 RELATED WORK

Norm emergence problem has received a wide range of attention in
MASs literature. Shoham and Tennenholtz [14] firstly investigated
the norm emergence problem in agent society based on a simple
and natural strategy - the highest cummulative reward (HCR). In
this study, they showed that HCR achieved high efficiency on social
conventions in a class of games. Sen and Airiau [13] investigated
the norm emergence problem in a population of agents within ran-
domly connected networks where each agent is equipped with cer-
tain existing multiagent learning algorithms. They firstly proposed
the model of learning social learning, where each agent learns from
repeated interactions with multiple agents in a given secenario. In
this study, the local interaction among each pair of agents is mod-
eled as two-player normal-form games, and a norm corresponds to
one consistent Nash equilibrium of the game. Later a number of pa-
pers [2,9,12,17] subsequently extended this work by leveraging more
realistic and complex networks (e.g., small-world network and scale-
free network) to model the interaction patterns among agents and
evaluated the influence of heterogeneous agent systems and space-
constrained interactions on norm emergence. Savarimuthu [11] re-

capped the existing mechanisms on the multiagent-based emergence,
and investigated the role of three proactive learning methods in ac-
celerating norm emergence. The influence of the presence of liars on
norm emergence is also considered and simulation results showed
that norm emergence can still be sustained in the presence of liars.
Villatoro et al. [17] proposed a reward learning mechanism based
on interaction histories. In this study, they investigated the influence
of different network topologies and the effects of memory of past
activities on convention emergence. Later, they [15, 16] introduced
two rules (i.e., re-wiring links with neighbors and observation) to
overcome the suboptimal norm problems. They investigated the in-
fluence of Self-Reinforcing Substructure (SRS) in the network on im-
peding full convergence towards society-wide norms, which usually
results in reduced convergence rates. Hao et al. [5] investigated the
problem of coordinating towards optimal joint actions in cooperative
games under the social learning framework by introducing two types
of learners (IALs and JALs). Yu et al. [24] proposed a novel collec-
tive learning framework to investigate the influence of agent local
collective behaviours on norm emergence in different scenarios and
defined two strategies (collective learning-l and collective learning-
g) to promote the emergence of norms where agents are allowed to
make collective decisions within networked societies. Later Hao et
al. [6] proposed two learning strategies under the collective learn-
ing framework: collective learning EV-l and collective learning EV-g
to address the problem of high mis-coordination cost and stochas-
ticity in complex and dynamic interaction scenarios. Recently Yu et
al. [22] proposed an adaptive learning framework for efficient norm
emergence. However, all the aforementioned works usually focus on
relatively small-size games, and do not address the issue of efficient
norm emergence in large action space problems.

Hierarchical learning framework, as a promising solution to accel-
erate coordination among agents, has been studied in different multi-
agent applications (e.g., package routing [25], traffic control [1], p2p
network [4] and smart-grid [19]). For example, Zhang et al. [25, 26]
studied the package routing problem and proposed a multi-level or-
ganizational structure for automated supervision and a communi-
cation protocol for information exchange between higher-level su-
pervising agents and subordinate agents. Simulation shows that the
organization-based control framework can significantly increase the
overall package routing efficiency than traditional non-hierarchical
appraoches. Abdoos et al. [1] proposed a multi-layer organizational
controlling framework to model large traffic networks to improve the
coordination between different car agents and the overall traffic ef-
ficiency. Until recently, Yu et al. [21] firstly proposed a hierarchical
learning framework to study the norm emergence problem. In this
study, they proposed a two-level hierarchical framework. Agents in
the lower level interact with each other and report information to
their supervisors in the higher level, while agents in the higher level
called supervisors pass down guidance to the lower level. Agents
in the lower level follow guidance in policy update. However, their
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framework is designed for coordination game only where each agent
only needs to coordinate on the same action for norm emergence.

3 HIERARCHICAL SOCIAL LEARNING
FRAMEWORK

3.1 Framework Overview

We consider a population N of agents where each agent is con-
nected following the underlying network topology. In each round,
each agent interacts with one randomly selected agent from its neigh-
bourhood. An agent’s neighbourhood consists of all agents which it
is physically connected with. We model the interaction between each
pair of agents as a normal-form game. At the beginning of each in-
teraction, one agent is randomly assigned as the row player and the
other as the column player. We assume that each agent can only have
access to its own action and payoff information during interaction.
On the other hand, the population of agents are divided into multi-
ple levels, and the agents in each level supervise the behaviours of
agents from its neighbouring lower level. For the sake of exposition,
we present the hierarchical social learning framework in two levels.
However, it is straightforward to extend the hierarchical social learn-
ing framework into k > 2 levels.

One illustrating example of two-level hierarchical network is
shown in Figure 1. Each supervisor agent i in the higher level is in
charge of a group of subordinate agents (denoted as sub(i)) in the
bottom level surrounded by dashes lines. For each subordinate agent
j, its supervisor agent is denoted as sup(j). For subordinates, the
topological connections between them are determined by the original
network topology; for supervisors, a pair of supervisors are neigh-
bouring agents if the corresponding group of subordinates they su-
pervise are connected. Note that a supervisor agent can be viewed as
a special subordinate agent within the original network, which is also
allowed to communicate with its neighbouring supervisor agents.

�������	
�	

���
���
���
���
�	

Figure 1. An example of the two-level hierarchical network

The interaction protocol of agents under the hierarchical social
learning framework is summarized in Algorithm 1. In each round,
each agent is paired with another agent randomly selected from its
neighbourhood to interact with (Line 3), and their roles are randomly
assigned (Line 4). Each agent then chooses an action following its
learning strategy (Line 5), and then updates its strategy based on its
current-round feedback (Line 6). After that, each subordinate agent
reports its action and reward information to its supervisor (Line 7-
9). At the end of each round, each supervisor collects all subordinate
agents’ information, generates and issues the instructions to its sub-

ordinate agents (Line 12-14). Finally each subordinate agent updates
its strategy based on the instructions accordingly (Line 15-17).

Algorithm 1 The interaction protocol of hierarchical framework
1: for each round of interaction do

2: for each agent i ∈ N do

3: Randomly choose a neighbouring agent j to interact;
4: Assign distinct roles randomly i → state si, j → state sj
5: Select actions ai and aj and get rewards ri and rj ;
6: Update its strategy based on 〈si, ai, ri〉.
7: if agent i is a subordinate agent then

8: Reporting its experience 〈si, ai, ri〉 to sup(i);
9: end if

10: end for

11: for each supervisor agent j do

12: Generate instructions based on the information from
sub(j);

13: Provide the instructions to sub(j);
14: end for

15: for each subordinate agent k do

16: Update its strategy based on the instructions from sup(k);
17: end for

18: end for

3.2 Information Exchange between Supervisors
and Subordinates

In the hierarchical social learning framework, subordinate agents
send their feedback information to their corresponding supervi-
sors, while supervisors pass down instructions to their correspond-
ing subordinate agents. In details, each subordinate agent i reports
its current-round interaction experience 〈si, ai, ri〉 to its supervisor
sup(i). For supervisors, we distinguish two different forms of in-
structions that they can provide to their subordinates: suggestion
and rule [25]. Intuitively, a rule is a hard constraint that specifies an
action that subordinate agents are forbidden to select under certain
state next round; in contrast, a suggestion is a soft constraint which
indirectly affects the strategies of the subordinate agents next round.

A set F of rules consists of all the forbidden actions for subordi-
nates under different states. Formally we have,

F = {〈s, a〉|a ∈ A, s ∈ S} (1)

where each element 〈s, a〉 denotes that action a is forbidden to take
under state s; A and S are the action space and state space of the
subordinates.

A set D of suggestions specifies the recommendation degrees
for different state-action pairs, which can be formally represented as
follows,

D = {〈s, a, d(s, a)〉|a ∈ A, s ∈ S} (2)

where d(s, a) is the recommendation degree of action a under state
s. Given an action and a state 〈s, a〉, if d(s, a) < 0, it indicates that
action a is not recommended to select under state s; if d(s, a) > 0, it
indicates subordinate agents are encouraged to select action a when
they are in state s. The way of determining rules and suggestions will
be covered in details in Section 3.3.2.

3.3 Learning strategy

In this section, we first present the learning strategy of supervisors
and how the rules and suggestions are generated in Section 3.3.1 and

T. Yang et al. / Accelerating Norm Emergence Through Hierarchical Heuristic Learning1346



freq(s, a) =
|{〈sk, ak, rk〉 | 〈sk, ak, rk〉 ∈ RepInf, sk = s, ak = a, rk = rmax(s, a)}|

|{〈sk, ak, rk〉 | 〈sk, ak, rk〉 ∈ RepInf, sk = s, ak = a}| (3)

3.3.2 respectively. Following that, we describe the learning strategy
of subordinate agents and how they utilize the instructions from su-
pervisors in Section 3.3.3. Without loss of generality, let us assume
that there is a set S of supervisors, and each supervisor i ∈ S, it su-
pervises the set sub(i) of subordinate agents. Each subordinate agent
j has a set neigh(j) of neighbours, and each supervisor agent i com-
municates with a set com(i) of other supervisors.

3.3.1 Supervisor’s strategy

We propose that each supervisor i holds a Q-value Qi(s, a) for
each action a under each state s (row or column player). Let us
denote the set of information from its subordinates as RepInfi =
{〈sk, ak, rk〉 | k ∈ sub(i)}. For each piece of information
〈s, a, r〉 ∈ RepInfi, supervisor agent i updates its Q-value follow-
ing the optimistic assumption shown in Equation (4),

Qi(s, a) = (1− αi) ∗Qi(s, a) + αi ∗ r (4)

where αi is its learning rate reflecting its updating degree between
using the past experience and using the current round information.

After that, supervisor i further updates its Q-values based on opti-
mistic assumption and the frequency information of each action sim-
ilar to the FMQ heuristic [7]. Formally we have,

FMQi(s, a) = Qi(s, a) + freq(s, a) ∗ rmax(s, a) ∗ C (5)

where rmax(s, a) is the max reward of each action a, freq(s, a)
is the frequency of receiving the reward of rmax(s, a) by choosing
action a under state s and C is a weighting factor.

The value of rmax(s, a) is obtained from the reported informa-
tion of its subordinate agents sub(i). Specifically, The value of
rmax(s, a) is computed as the maximum reward that all of its sub-
ordinates receives under state s by choosing action a in the current
round experience. Formally we have,

R(s, a) = {rk | 〈s, a, rk〉 ∈ RefInf} (6)

rmax(s, a) = max{R(s, a)} (7)

The frequency information freq(s, a) is calculated as the empir-
ical probability of receiving the maximum reward rmax(s, a) under
state s when action a is selected based on the reported information
RepInf collected from the subordinates which is shown in Equation
(3).

After updating the strategy based on the information collected
from its subordinates, we also allow each supervisor to learn from its
neighboring peers (supervisors). Specifically each supervisor com-
municates with a neighboring supervisor randomly selected and imi-
tates the neighbor’s strategy. The motivation of imitating peers comes
from evolutionary game theory [18], which provides a powerful
methodology to model how strategies evolve over time based on their
relative performance. One of the widely used imitation rules is the
proportional imitation [10], which is adopted here as shown in Equa-
tion (8),

p =
1

1 + e−β∗(FMQj(s,a)−FMQi(s,a))
(8)

where parameter β controls the degree of imitating the strategy (the
FMQ-value) of the neighbouring supervisor.

Finally each supervisor i updates its strategy (denoted as E-value
Ei(s, a)) for each action a under state s as the average between the
FMQ-values of its own and its neighbour j weighted by parameter p.
Formally we have,

Ei(s, a) = (1− p) ∗ FMQi(s, a) + p ∗ FMQj(s, a) (9)

3.3.2 Supervisor Instruction Generation

Next we introduce how a supervisor generates instructions for its
subordinates at the end of each round. As previously mentioned,
there are two forms of instructions from a supervisor: rules and
suggestions. First each supervisor i normalizes the E-values, which
serves as the basis for generating instructions for its subordinates.
Formally we have,

E′i(s, a) =
Ei(s, a)− Ei(s, a)

σ
(10)

where Ei(s, a) is the mean of E-values averaged over all state-action
pairs shown in Equation (11),

Ei(s, a) =

∑
a∈A Ei(s, a)

|A| (11)

The parameter σ is the standard deviation of FMQ-value following
Equation (12),

σ =

√
1

|A|
∑
a∈A

(Ei(s, a)− Ei(s, a))2 (12)

Given a state-action pair 〈s, a〉, if the E′-value E′(s, a) is smaller
than a given threshold, it indicates that selecting action a is not a wise
choice under state s, thus it is encoded as a rule. Formally we have,

F = {〈s, a〉|E′(s, a) < δ} (13)

where δ is the threshold which is set to the value of -0.5 in this paper.
For each state-action pair (s, a), its recommendation degree

d(s, a) is set to the value of E′i(s, a). Thus the set of suggestions
from supervisor i can be represented as follows,

D = {〈s, a, E′i(s, a)〉 | a ∈ A, s ∈ S} (14)

Given a state-action pair (s, a), if E′i(s, a) < 0, it indicates that
selecting action a is not recommended under state s; if E′i(s, a) > 0,
it indicates subordinate agents are encouraged to select action a when
they are in state s.

3.3.3 Learning Strategy of Subordinates

Similar to the strategies of supervisors, each subordinate agent j
also keeps a record of a Q-value Qj(s, a) for each action a ∈ Aj

under each state s. The Q-value Qj(s, a) indicates the past perfor-
mance of choosing action a under state s and serves as the basis
for making decisions [3]. For each subordinate agent j, let us first
denote its feedback information received by the end of round t as
FeedInf t

j = {〈sm, am, rm〉|m ∈ [1, t]}. At the end of each round
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t, subordinate agent j updates its Q-value based on its feedback
〈st, at, rt〉 as follows,

Qj(st, at) = (1− αj) ∗Qj(st, at) + αj ∗ rt (15)

where αj is the learning rate modelling its updating degree between
using the previous experience and using the most recent information.

Additionally each subordinate agent also updates its Q-values by
taking into consideration both the optimistic assumption and the fre-
quency information [7]. Formally we have,

FMQj(s, a) = Qj(s, a) + freq(s, a) ∗ rmax(s, a) ∗ C (16)

where rmax(s, a) is the max reward of each action a based on its
own experience, freq(s, a) is the frequency of getting the payoff of
rmax(s, a) until now for action a and C is a weighting factor defin-
ing the trade-off between updating using Q-values and maximum
payoff information. freq(s, a) is calculated the same as shown in
Equation (3).

After receiving supervisor’s suggestions, each subordinate further
adjusts its estimation of the goodness of each state-action pair based
on the FMQ-values as follows,

Ej(s, a) = FMQj(s, a) ∗ (1 + d(s, a) ∗ ρ) (17)
where d(s, a) is the suggestion degree on the state-action pair (s, a),
and ρ is a weighting factor controlling the influence of the recom-
mendation degree on the E-values.

Besides, supervisors also influence the subordinate agents’ explo-
ration rates. Let us suppose a subordinate agent j selects action a
under current state s. If the supervisor i’s recommendation degree
d(s, a) < 0, which indicates subordinate agent j’s current choice
is not recommended, and agent j should increase the exploration
rate to have more chance to select the recommended actions next
time. On the other hand, if the recommendation degree d(s, a) > 0,
it indicates the subordinates’ current choice is recommended. Thus
subordinate agent j decreases its exploration rate to avoid selecting
discouraging actions in the future. For both cases, the adjustment de-
gree varies depending on the absolute value of the state-action pair’s
recommendation degree. Formally each subordinate agent updates its
exploration rate as follows,

εj = εj ∗ (1− d(s, a) ∗ γ) (18)

where γ is a weighting factor controlling the influence degree of the
supervisor’s suggestion on the subordinates’ exploration rates.

Finally, given the current state s, each subordinate agent j chooses
its action from those actions whose corresponding state-action pair
do not belong to the set F of rules based on the corresponding set
of E-values according to the ε-greedy mechanism. Specifically each
agent chooses its action with the highest E-value with probability
1−εj to exploit the action with best performance currently (randomly
selection in case of a tie), and makes random choices with probability
εj to explore new actions with potentially better performance.

4 EXPERIMENTAL SIMULATION

In this section, we start with evaluating the norm emergence per-
formance of our approach HHLS under different types of games by
comparing with the state-of-the-art strategies. Following that we ex-
plore the influence of some parameters on norm emergence. Unless
otherwise mentioned, all simulation results are obtained under a pop-
ulation of 500 agents within a small-world network. The average con-
nection degrees of small-world and scale-free network are set to 6.
All results are averaged over 1000 runs. The parameter settings are
shown in Table 4.

Table 4. The initial value of parameters.

Parameters α ε β γ ρ θ

Value 0.99 0.93 0.1 0.05 0.01 0.005

4.1 Performance evaluation

We compare our approach HHLS with two previous works: hierar-
chical learning in [21] and social learning in [2]. All these three learn-
ing approaches are within the same social learning environment, i.e.,
each agent is allowed to interact with only one of its neighbours each
round. The work in [2] is the representative state-of-the-art approach
tackling norm emergence problem under multiagent social learning
framework without considering any hierarchical organization. The
work in [21] is the most recent approach introducing hierarchical
learning into multiagent social learning framework to improve norm
emergence efficiency. Four representative 6-action games are consid-
ered shown from Table 5 to Table 8.

Table 5. The payoff matrix of coordination game.

Agent 2’s actions

a b c d e f

Agent 1’s actions

a 1 -1 -1 -1 -1 -1

b -1 1 -1 -1 -1 -1

c -1 -1 1 -1 -1 -1

d -1 -1 -1 1 -1 -1

e -1 -1 -1 -1 1 -1

f -1 -1 -1 -1 -1 1

4.1.1 Coordination game (CG)

We first consider agents playing a 6-action coordination game (Table
5) in which there exist six norms. Agents are preferred to choose the
same action. Figure 2 shows the dynamics of the average payoffs of
agents with the number of rounds averaged for the three learning ap-
proaches. We can observe that all learning methods enable agents to
achieve an average payoff of 1. Our hierarchically heuristic learning
strategy converges faster than the hierarchical learning method [21],
and the social learning method [2] is the slowest. This is because
HHLS enables supervisor to influence subordinate agents in a more
efficient manner, thus accelerating norm emergence.

4.1.2 Anti-coordination game (ACG)

Similarly, we consider agents playing a 6-action anti-coordination
game (Table 6) in which there also exist six equivalently optimal
norms. However, different from coordination game, each norm re-
quires agents to choose different actions. Figure 3 shows the dynam-
ics of the average payoffs using three learning methods. We can ob-
serve that both social learning [2] and HHLS enable agents to achieve
an average payoff of 1, while the hierarchical learning fails. Besides,
our HHLS converge faster than the social learning approach [2],
which justifies the efficiency of introducing a hierarchical learning
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structure. For the hierarchical learning [21], it does not distinguish
the state information and thus cannot adaptively select different ac-
tions for different states.

Table 6. The payoff matrix of anti-coordination game.

Agent 2’s actions

a b c d e f

Agent 1’s actions

a -1 -1 -1 -1 -1 1

b -1 -1 -1 -1 1 -1

c -1 -1 -1 1 -1 -1

d -1 -1 1 -1 -1 -1

e -1 1 -1 -1 -1 -1

f 1 -1 -1 -1 -1 -1

4.1.3 Coordination game with high penalty (CGHP)

Next, we consider 100 agents play a 6-action coordination game with
high penalty (Table 7), in which there exist four optimal norms and
two suboptimal norms. In this kind of games, agents are vulnerable
to converge to suboptimal norms due to the existence of high mis-
coordination cost (-30). Figure 4 shows the dynamics of the average
payoffs of agents with the number of rounds for the three learning
approaches. We can see that only HHLS enables agents to achieve
an average payoff of 10 (i..e, converging to one optimal norm). The
other two learning methods converge to one of the suboptimal norms,
and they also converge slower than HHLS. We hypothesize the su-
perior performance of HHLS is due to the integration of optimistic
assumption during strategy update (to overcome mis-coordination
cost effect) and efficient hierarchical supervision (to accelerate norm
emergence speed).

4.1.4 Fully stochastic coordination game with high penalty
(FSCGHP)

Last, we consider agents playing a 6-action fully stochastic coordi-
nation game with high penalty (Table 8). In FSCGHP, each outcome
is associated with two possible payoffs and the agents receive one of

Table 7. The payoff matrix of coordination game with high penalty.

Agent 2’s actions

a b c d e f

Agent 1’s actions

a 10 0 -30 -30 0 -30

b 0 7 0 0 0 0

c -30 0 10 -30 0 -30

d -30 0 -30 10 0 -30

e 0 0 0 0 7 0

f -30 0 -30 -30 0 10

them with probability 0.5, which models the uncertainty of the inter-
action results. This game is in essence the same with the CGHP in
which there also exist four optimal norms and two suboptimal norms.
But it is more complex and difficult to emerge norms due to the
stochasticity of the environments. Figure 5 shows the dynamics of
the average payoffs of agents as the number of rounds for the three
learning strategies. We can observe that in this challenging game,
only HHLS enables agents to achieve an average payoff of 10 (one
optimal norm is converged to). In contrast, the other two learning
strategies converge to one of the suboptimal norms with a slower con-
vergence rate. Finally it is worth to mention that if the size of norm
space is further increased, the social learning method [2] and hierar-
chical learning method [21] cannot converge (to a suboptimal norm)
within 10000 runs. However HHLS still can support converging to
one optimal norm within approximately 200 rounds. The influence
of action size will be discussed in Section 4.2.2 in details.

4.2 Influence of key parameters

In this section, we turn to investigate the influence of key parameters
on the performance of norm emergence. We present the results for
hierarchically heuristic learning under the small-world network and
the CGHP game. The rest of parameters follow the same settings in
Section 4 except the parameter being evaluated is changed.
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Table 8. The payoff matrix of fully stochastic coordination game with high
penalty.

1’s payoff
2’s payoff

Agent 2’s actions

a b c d e f

Agent 1’s
actions

a 12/8 5/-5 -20/-
40

-20/-
40

5/-5 -20/-
40

b 5/-5 14/0 5/-5 5/-5 5/-5 5/-5

c -20/-
40

5/-5 12/8 -20/-
40

5/-5 -20/-
40

d -20/-
40

5/-5 -20/-
40

12/8 5/-5 -20/-
40

e 5/-5 5/-5 5/-5 5/-5 14/0 5/-5

f -20/-
40

5/-5 -20/-
40

-20/-
40

5/-5 12/8

4.2.1 Influence of population size

The influence of population size is shown in Figure 6. We can clearly
observe the norm emergence efficiency is reduced as the increase of
the population size. Given the cluster size unchanged, the number of
clusters increase as the population size becomes larger. Thus it takes
more time for each supervisor to coordinate between each other, and
also more efforts are required for supervisors to guide all of their
subordinate agents towards a consistent norm.

4.2.2 Influence of action size

Figure 7 shows the dynamics of the average payoffs of agents for
different action sizes. We can see that the average convergence rate
is decreased as the increase of the action space. This is reasonable
because the coordination space becomes larger when the action size
increases. Besides, larger action size usually results in more chances
of mis-coordination cost and suboptimal norms, which additionally
increases the coordination difficulty for agents toward a consistent
norm. Finally it is worth noting that with the increase the action
space, our framework can still efficiently support norm emergence
without significantly degrading the performance (supporting norm

emergence within 1000 rounds for all cases). In contrast, in previ-
ous socially learning framework without utilizing a hierarchical or-
ganization [2], the norm convergence speed is decreased significantly
when the action space is increased.

Table 9. The average number of rounds needed before convergence under
different network topologies.

Convergence
Speed

Game type

CG ACG CGHP FSCGHP

Network
topology

Grid 142 141 131 153

Ring 144 146 135 157

Random 146 136 122 162

Small-world 141 141 124 162

Scale-free 149 144 129 163

4.2.3 Network topology

We evaluate the influence of five different networks: random net-
work, grid network, ring network, small-world and scale-free net-
work. Table 9 shows the average number of rounds needed before
convergence. We find that hierarchical social learning framework is
robust to different network topologies. HHLS enables agents to con-
verge to norms in approximately the same number of runs under all
the above five network topologies for different types of games.

Table 10. The influence of neighborhood size

Neighbour
size 2 6 8 10 20 30 50 99

Convergence
Rate 144 141 143 139 141 141 142 139

4.2.4 Influence of neighborhood size

We empirically evaluate the influence of neighborhood size varying
it from 2 up to 99 (fully connected) with a population of 100 agents.
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Table 10 shows the the average number of rounds needed before con-
vergence for different neighborhood sizes. We can see that the aver-
age number of rounds required is stabilized around 140 rounds. This
finding is different from the results usually observed in the traditional
socially learning framework without a hierarchical structure [2]. This
is because in hierarchical social learning framework, each supervi-
sor supervises and guides a cluster of subordinate agents, which can
overcome the low connectivity disadvantage when the neighbour-
hood size is small.

4.3 Influence of cluster size

One unique feature of the hierarchical social learning framework is
the division of clusters of agents. Figure 8 and 9 show the influence
of cluster size on norm emergence with a population of 100 agents.
From Figure 8, we can see that the norm emergence rate is gradually
increased as the increase of the cluster size, and stabilized when the
cluster size is larger than 15. This phenomenon can be observed more
clearly in Figure 9, which shows the average no. of rounds needed
before convergence is reduced with the increase of cluster size and
stabilized around 100 rounds.

When the cluster size is increased to 100 in the extreme case, it
is essentially reduced to centralized control in which only one su-
pervisor agent supervises all the rest of agents. In this case, all the
communication and computation burden would fall on this single su-
pervisor agent. When the cluster size is 1, it is essentially equivalent
with the case of the traditional social learning without a hierarchi-
cal structure. When the cluster size varies between 1 and 100, with
the increase of the cluster size, each supervisor agent can supervise
more subordinate agents and thus it is easier for agents to coordi-
nate among each other. However, as the cluster size exceeds certain
threshold, the advantage of centralized supervision diminishes. This
property is desirable since the same level performance as fully cen-
tralized supervision can be achieved under distributed supervision,
which not only increases the robustness of the HHLS and the frame-
work itself but reduces the communication and computation burden
of supervisor agents.

Next we examine the robustness of HHLS in details by investigat-
ing the following questions: whether a consist norm can still rapidly
emerge and how is the emergence efficiency changed when certain
amount of supervisors are disabled? Figure 10 shows the dynamics
of expected payoffs of agents with some supervisors disabled, and
the results are averaged over 6-action coordination game with high

penalty. We can see that hierarchically heuristic learning still enables
agents to converge to a consist norm when certain amount of su-
pervisors are disabled. Though the convergence rate is gradually de-
creased as the increased of the number of disabled supervisors, better
performance can still be achieved than the traditional social learning
framework. This is expected since those subordinate agents without
supervisors can only learn based on their local information, and the
hierarchical social learning framework would be reduced into the tra-
ditional social learning framework when all supervisors are disabled.

5 CONCLUSION AND FUTURE WORK

We propose a hierarchically heuristic learning strategy to ensure
efficient norm emergence in different distributed multiagent envi-
ronments. Extensive simulation shows that our strategy can enable
agents to reach consistent norms more efficiently and in a wider va-
riety of games compared with previous approaches. The influence of
different key parameters (e.g., population size, action space, neigh-
bourhood size and network topology) is also investigated in details.
We also evaluate the influence of centralized and decentralized hier-
archically design by examining the effects of different cluster sizes
(e.g., different number of supervisors). We find that sufficient degree
of distributed supervision (large number of supervisors) can achieve
the same performance as fully centralized supervision (only one su-
pervisor), and thus making the HHLS robust towards the failure of
certain supervisors.

In this paper, we divide subordinate agents randomly into several
clusters. As future work, it is worthwhile investigating whether there
exists an optimal way of clustering agents in terms of maximizing
norm emergence rate and how an optimal clustering structure can be
formed automatically among agents.
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